Тонны воды и огромный объем. Интересные факты об облаках

В следующий раз, когда мы будем жаловаться на плохую погоду и отсутствие солнца, стоит вспомнить, что каждый день облаками закрыто в среднем 70% площади планеты.


Хотя люди называют облака воздушными и легкими, это совсем не так. По-настоящему облака средних размеров могут весить до 10 тонн. Несмотря на это, они беспрепятственно перемещаются по небу, поскольку их вес распределяется между многочисленными капельками или кристалликами льда.

Одно дождевое облако, если его вода мгновенно выпадет ливнем, в среднем способно дать 5 миллиметров осадков. Поэтому сильные дожди бывают продолжительными только при подходе новых облаков.


10 основных и пять дополнительных типов облаков включает классификация, используемая Всемирной метеорологической ассоциацией. Эти типы подразделяются примерно на 100 разновидностей.


30–35° с. ш. и ю. ш. называются конскими широтами. Из-за нисходящих потоков, вызванных глобальной циркуляцией атмосферы, здесь мало облаков и осадков, часто бывает штиль. В прошлом, когда из-за штиля парусники не могли плыть, ради экономии пресной воды убивали переправляемых лошадей — отсюда название широт.

100 микрокапель воды встречается на пути солнечного луча в типичном кучевом облаке.


–10…–15 °C — пограничная температура преобразования влаги: когда в тропосферных облаках становится холоднее, влага конденсируется в ледяные кристаллы. До –10 °C капли остаются жидкими, хотя и переохлажденными.

20–30 микрон — размер капель дождевого облака, при котором их перестают удерживать восходящие потоки воздуха. Капли начинают падать, сливаются по пути с другими каплями, увеличиваются в размере и превращаются в дождь.


Облака не только тяжелые, но и очень большие. Капельки или кристаллики разбросаны по воздушному пространству на многие километры. Так, у грозовых облаков расстояние от их основания до вершины может достигать 10 км.

75–85 километров — максимальная высота, на которой в земной атмосфере образуются облака. Их называют серебристыми. Эти облака состоят из кристалликов льда размером в десятую долю микрона. Они образуются при температурах ниже –120 °C.

200 млн м3 — объем типичного кучевого облака (800 x 500 x 500 м). Это почти в 100 раз больше объема пирамиды Хеопса.


0,5 грамма жидкой воды в форме капелек содержится в кубометре типичного кучевого облака.

200000000х0,5=100000000, т. е. 100 тонн воды проплывает над вами теплым летним днем в виде безобидного облака. Столько же весят 20 слонов.


Интересно, что облака не могут образоваться без пыли. Ведь водяной пар сам по себе никогда не сможет создать подобную плывущую массу. Для этого ему нужны частицы пыли или же дыма. К ним и притягиваются капельки, из которых затем рождается облако.

У облаков есть своя продолжительность «жизни». Она напрямую зависит от влажности воздуха в атмосфере. Если влажность на низком уровне, облака начнут испаряться. Иногда «жизнь» облака может длиться не больше 15 минут. Когда влажность довольно высокая, повышается вероятность выпадения осадков, а облако будет оставаться над землей ещё довольно долго.


У любого человека облака ассоциируются с небом, однако одному художнику всё же удалось создать их в помещении. Выходец из Нидерландов Бернднаут Смильде придумал, как сформировать облако, чтобы его сфотографировать. Он использует специальное устройство, генерирующее дым. Предварительно в воздухе распыляется водяной пар. При их объединении и рождается небольшое облако, правда, живет оно не дольше 10 сек.


Облака есть не только на Земле. Они были зафиксированы также на Марсе и Венере, Титане (спутнике Сатурна) и Тритоне (спутнике Нептуна). Однако здесь облака имеют уже совсем другую природу, которая объясняется условиями на этих планетах и спутниках. Например, на Венере их основой становится серная кислота.


Существует Общество любителей облаков — международная организация, основанная в 2004 году. Это общество объединяет метеорологов-любителей, физиков, фотографов, художников и просто людей, неравнодушных к красоте облаков. У них даже есть собственный манифест, звучащий очень поэтично:

  • Мы считаем, что облака незаслуженно очернены, что без них жизнь стала бы гораздо беднее.

  • Мы думаем, что облака — сама поэзия Природы, что из всех её форм облака являются наиболее яркими выразителями идеи равенства: любоваться их фантастическим видом может каждый.

  • Мы обязуемся сражаться против идеи «безоблачного неба» во всех её проявлениях. Жизнь станет скучной, если мы будем день за днем наблюдать за небом без облаков.

  • Мы хотим напомнить людям, что облака — выразители атмосферного настроения, что по ним можно читать так же, как по лицу человека.

  • Мы считаем, что облака созданы для мечтателей и что созерцание облаков благотворно влияет на душу. Тем, кто находит в очертаниях облаков какие-то причудливые фигуры, не придется платить по счету психоаналитику

  • Итак, мы обращаемся ко всем, кто нас слышит: Смотрите вверх, любуйтесь эфемерной красотой и живите, витая в облаках.

Источник: vokrugsveta.ru
Поделись
с друзьями!
852
0
8
2 месяца

Парадоксы биологии, которым до сих пор нет объяснения

Биосфера полна странных и удивительных явлений. Достаточно просто взглянуть на акул-домовых и утконосов. Биология может многое рассказать о том, почему в мире все так, как есть, но время от времени происходит нечто такое, что заставляет биологов лишь пожимать плечами.


1. Зевота


Есть три вещи, способные почти наверняка заставить любого из нас зевать: усталость, скука и зрелище зевающего человека. Первые две в какой-то степени связаны между собой, а третья – это та самая коварная и заразительная зевота, которая всех раздражает. Но независимо от того, что происходит вокруг, когда вы начинаете зевать, стоит отметить, что с биологической точки зрения это действие не имеет никакого смысла.


Однако этот феномен в равной степени распространен и у людей и у животных, и даже если зевота указывает на то, что вы устали, причина, по которой это происходит, остается загадкой. Какой толк широко раскрывать рот, если речь идет о физической усталости?

Исследования показали, что гормоны, выделяющиеся при зевании, вызывают очень кратковременное увеличение частоты сердечного ритма, которое может оказать легкий тонизирующий эффект, если вы устали, однако, гораздо чаще зевоту можно ошибочно принять за признак сонливости.

Тот факт, что большинство людей зевают, когда просыпаются, и то же самое делают перед тем, как уснуть, еще больше сбивает с толку. Таким образом, приходится констатировать, что истинная природа и функция зевоты до сих пор так и не установлена.

2. Почему мы плачем


В детстве мы плачем по самым разным причинам: из-за ободранного колена, потерянной игрушки и так далее. Почти все мы плачем над луком, но это исключительно из-за выделяемых им летучих химических веществ. Когда плачет младенец, для него это единственный способ привлечь внимание. Но почему нас заставляет плакать грустный фильм или красивая музыка?

Эмоциональные слезы с точки зрения биологии не имеют никакого смысла. Они ничего нам не дают. Вы можете возразить, что плач высвобождает химические вещества, которые позволяют нам чувствовать себя комфортно, безопасно и так далее. Но сами слезы для этого совершенно не нужны.

Мы можем плакать от ярости, страха или горечи. Но каковы бы ни были эмоции, вызвавшие слезы, у науки нет никакого объяснения, почему это вообще происходит. Физически, все, что делают слезы, это промывают и смазывают наши газа. Они удаляют загрязнения и поддерживают чистоту. А что еще они делают – этого никто до сих пор не знает.

3. Танцующий лес

Сосна – одно из самых распространенных деревьев на планете. Если вы находитесь в Северном полушарии, скорее всего, вас окружают эти красивые хвойные великаны. Они встречаются, в Соединенных Штатах, Канаде, России, Китае и почти везде на севере. В целом можно сказать, что они выглядят так же, как и большинство нормальных деревьев. За исключением одного места.


В России существует удивительное явление, которое называется «танцующим лесом». В Калининградской области есть место, где растет много сосен, но в отличие от других мест, здесь у них весьма причудливый вид. Они изгибаются, скручиваются и извиваются в спирали, как будто какой-то великан завязывал их в узлы.

Деревья, о которых идет речь, были посажены в шестидесятые годы прошлого столетия, и они не должны были быть столь необычными. Существуют теории, согласно которым дело в рыхлой песчаной почве или в гусеницах, которые повреждают их первые почки и делают хилыми и болезненными. Говорят также о ветре и даже о каком-то искусном лесоводе, который совершает различные манипуляции с деревьями по мере их роста. Однако, до сих биологам пор так и не удалось найти убедительное объяснение этому феномену.

4. Почему у нас есть отпечатки пальцев


Первое использование дактилоскопии для осуждения преступника относится к 1910 году. Таким образом, мы уже более ста лет понимаем уникальность отпечатков пальцев. Но, ведь совершенно очевидно, что они у нас имеются вовсе не для того, чтобы нас поймали за совершенное преступление. На самом деле, приходится признать, что никто не знает, зачем они нам нужны.


Если говорить о причудах биологии, трудно найти более необычную, чем эта. У каждого человека в мире есть свой уникальный папиллярный узор, но никто не может объяснить его природу и назначение. За исключением того, что, когда эта теория подвергается проверке, она ее не выдерживает.

Текстура подушечек пальцев на самом деле не увеличивает трение между пальцами и предметами, которые мы держим. Напротив, она уменьшает трение и затрудняет захват предметов, поскольку уменьшает площадь соприкосновения.

Другая теория об отпечатках пальцев заключается в том, что они помогают нам получать тактильные ощущения и собирать информацию. Но такова ли на самом деле их цель? «Может быть» – это лучший ответ, который есть на сегодняшний день у науки.
Источник: billionnews.ru
Поделись
с друзьями!
1094
8
24
5 месяцев

Как запомнить что угодно и не потерять голову: научный подход к обучению

Тотальная память — плохо для мозга. Чтобы детально запомнить событие, стоит о нем вспоминать как можно реже. Чем больше вы знаете по теме, тем больше новой информации вы запомните. Но если информации будет слишком много, то не вся она будет зафиксирована в мозге.


Мало кто знает, что первая техника запоминания значительно старше первых теорий о памяти. К тому моменту, когда Платон с Аристотелем начали дискутировать о памяти как «восковой дощечке в душе», древнеримские и древнегреческие философы и поэты уже вовсю пользовались техниками запоминания. В частности, популярным по сей день методом «умственной прогулки», которую, согласно легенде, еще в V веке до нашей эры придумал древнегреческий поэт Симонид Кеосский.

Следуя этой технике, для запоминания и тренировки памяти следует использовать знакомое вам место, например вашу квартиру, и мысленно наполнять его предметами, которые будут ассоциироваться с тем, что вам нужно запомнить. И каждый раз, когда вам понадобится эта информация, достаточно будет мысленно пройти привычным путем по этому «дворцу памяти».

Именно так чемпионы по запоминанию воспроизводят десятки тысяч знаков числа Пи. Разумеется, можно предположить, что их мозг структурно отличается от мозга среднестатистического человека. Но это предположение в 2002 году опровергла специалист по нейронаукам Элеонор Магуайр. Она сравнила сканы мозга рекордсменов и обычных людей — и не нашла никаких дополнительных отделов мозга. В чем же секрет?


«Мы знаем, что память — эмерджентный феномен. Это системное свойство, которое не сводимо к отдельному обособленному элементу. Это результат работы не отдельного нейрона, не целого мозга и даже не всего организма, а живого существа, находящегося в непрерывном взаимодействии с объектами окружающей среды. Просто так вы ничего не вспомните — вы всегда вспоминаете, находясь в рамках конкретной деятельности, контактируя всем телом с объектами окружающей среды. В рамках этих процессов и фигурирует память. А мозг — просто хранилище данных, замечательно устроенное. Оно обеспечивает поставку данных для регуляции поведения», — рассказывает Иван Хватов, кандидат психологических наук, эволюционный психолог, руководитель научно-образовательного центра биопсихологических исследований, соавтор образовательных программ факультета наук о жизни Московского института психоанализа.


Ученые разобрались, как формируется память, но лишь в общих чертах. Мы знаем, что пока человек думает, ощущает и наблюдает за миром вокруг, «фейерверк» активности между нейронами укрепляет синаптические связи и тем самым на физическом уровне формируются наши воспоминания и знания. Мы знаем, что разные отделы мозга отвечают за разные физиологические процессы, которые обеспечивают память. Мы знаем, что память бывает разная: эксплицитная память о фактах и событиях, имплицитная память, к которой, например, относятся навыки и процедуры, — и за них тоже отвечают разные области мозга. За физическое закрепление эксплицитных знаний отвечает гиппокамп. Мы знаем и то, что связи между нейронами динамичны. Но многие вопросы остаются открытыми:


«Есть ли качественные различия в физиологических процессах запоминания разных типов данных: визуально-кинестетических, аудиальных и так далее? Или, например, какую функцию выполняет нейрогенез у взрослых? Как он вообще осуществляется? Есть множество проектов, которые занимаются расшифровкой коннектома человека — всей сети связей между нейронами. И мы до сих пор на самом деле не знаем, как происходит считывание самых базовых данных, ощущений, из которых происходит синтез более сложных образов, перцепции, памяти. Остается масса черных пятен», — рассказывает Иван Хватов.


Как же тогда ученые изучают наш мозг? Достаточно ли мы знаем о нашей памяти, чтобы научно подходить к обучению? Почему важны сон и спорт? И можно ли «запастись» возможностями мозга и сохранить ясность ума в старости?

От нейронов — к ансамблям: основы работы мозга


Чтобы понять, как формируются новые «дорожки» между нейронами в тот момент, когда мы узнаем что-то новое, ученые пробовали отследить, какие гены активируются или «отключаются» в ходе такой активности (современные технологии позволяют это делать). Но это не дает полной картины, потому что большинство этих генов кодируют белки — и гораздо эффективнее было бы следить за концентрацией конкретных белков, ведь именно благодаря им в мозге происходят структурные изменения. Следить за ними гораздо сложнее, но ученые нашли выход.

В прошлом году группа ученых из Научно-исследовательского института Скриппса придумала, как с помощью метки в виде аминокислоты — азидонорлейцина (Azidonorleucine) — отслеживать появление новых белков от конкретного нейрона. При формировании новые белки включали в себя эту метку, и ученые получали возможность отслеживать их появление.

Эксперимент на мышах помог выявить изменения концентрации 300 различных белков, многие из которых отвечали за структуру и форму нейронов, а также их общение с другими клетками. То есть даже небольшая активность мозга спровоцировала продолжительные процессы по преобразованию связей между нейронами — мозг запомнил информацию.

И такой подход к изучению мозга уже получил признание. В нынешнем 2023 году самую престижную награду в сфере науки — Brain Prize — получили Майкл Гринберг, Кристина Холт и Эрин Шуман. Получили как раз «за революцию нашего понимания того, как нейроны управляют тысячами разных белков — строительными блоками жизни, необходимыми для поддержания развития, пластичности и работы мозга».

Есть и исследователи, которые идут другим путем — «от большего к меньшему», изучая «фейерверки» в мозге. Еще пару десятков лет назад, описывая в работах активность этого органа, ученые выстраивали последовательные цепочки частей мозга, участвующих в том или ином процессе, как будто это составляющие живого компьютера. Сегодня подход изменился: под каждую активность ученые выявляют «ансамбли» нейронов из разных областей органа.


Кстати, тут важно упомянуть, что нейроны не гомогенны: они морфологически похожи, но все же это разные клетки, которые даже в рамках одного морфологического или функционального класса отличаются длиной, размером и ветвистостью отростков, поэтому аналогия с «ансамблем» так хорошо работает. Они вступают в «игру» по очереди, в правильные моменты.

Поэтому и миф о том, что мы используем лишь 10 процентов нашего мозга, так нелеп. Во-первых, наш мозг всегда работает фоново, поддерживая жизнедеятельность нашего организма. Во-вторых, все его области важны — иначе бы большинство травм мозга не наносили бы вреда его возможностям. И наконец, мы отлично знаем, как выглядит состояние, при котором множество сетей нейронов из разных частей мозга начинают неконтролируемо отправлять сигналы — такое состояние называется генерализованным эпилептическим приступом. Поэтому важнее укреплять связи и увеличивать «ансамбли» нейронов — так мы накапливаем опыт, знания и воспоминания.

Объем, сложность и повторение — главные советы


На основе этих знаний о механике формирования «ансамблей» нейронов исследователи и дают советы о том, как эффективнее учиться.

Во-первых, вы просто физически не сможете выучить огромный объем незнакомой информации за один раз. И не потому, что у вас ограниченное количество нейронов.


«Достаточно ли нам нейронов, чтобы все запомнить? Это все равно что спросить, достаточно ли нам 33 букв русского алфавита, чтобы рассказать обо все на свете? Вроде хватает, ведь комбинации разные. Нейроны могут образовывать огромное количество новых связей, включаться в новые ансамбли. В этом плане нет предела, ну или мы его еще не нашли. После насыщенного дня действительно происходит перенасыщение рабочей памяти, на физиологическом уровне это связано с переизбытком токсичных метаболитов, накопившихся в мозге в результате длительной интенсивной работы. Кроме того, перенасыщение идет эмоциональное, вы начинаете сбиваться, отвлекаться. Устаете вы как субъект», — объясняет Иван Хватов.


Во-вторых, наращивайте сложность и объем. Чем больше «веточек» в вашем «ансамбле» нейронов по конкретной теме, тем больше у вас точек роста, тем больше вы сможете запомнить новой информации. И перед «добавлением» новых нейронов стоит активировать ваш «ансамбль», мысленно пробежавшись по тому, что вам уже известно.

При этом выстраивайте свои знания в систему, а не сваливайте как попало. У тех, кто просто учит ответы на вопросы и получает отличные оценки, не выстраивается целостная структура профессионализма. Ответьте себе на вопрос, чем вы хотите заниматься, и тогда из каждой дисциплины вы будете автоматически забирать полезное для вас. Может, оценки будут не самые лучшие, но зато сложится система знаний. А в будущем этот образ профессионализма может и трансформироваться.

В-третьих, регулярно повторяйте то, что вы хотите выучить. Причем не просто перечитывайте конспекты или книги, а меняйте формат повторения. Сперва перескажите лекцию другу, потом запишите, потом схематически нарисуйте усвоенную информацию.


«А лучше всего материал сохраняется, если сформировать к нему личное отношение. Самое простое — не согласиться с ним. Если концепция, теория, гипотеза кажется спорной — это хорошо! Вы будете искать контраргументацию и запомните его. Чем глубже вы проработаете материал, тем глубже он вплетется в семантическое пространство и тем легче вам будет его воспроизвести», — добавляет Иван Хватов, соавтор образовательных программ факультета наук о жизни Московского института психоанализа.


И последнее: помните, что вы учитесь не только тогда, когда активно повторяете, — мозг учится постоянно, перестраивая и обрабатывая ранее полученную информацию, укрепляя ее в долговременной памяти.

Кстати, несколько лет назад группа уважаемого нейробиолога Судзуми Тонегаве выяснила, что процессы кратковременной и долговременной памяти запускаются одновременно — информация не «перетекает» из одной в другую уже после формирования, как думали многие ученые. Просто долговременная память активируются постепенно, и чтобы она правильно все «запомнили», ей помогает кратковременная.

«Промывка» мозгов


Многочисленные исследования показали, что процессам запоминания и обработки информации помогает физическая активность. Ученые обоснованно предполагают, что причина в усилении кровообращения. А вот почему для хорошей работы мозга необходим сон, пока до конца не ясно.

Одно из составляющих воздействия сна было доказано около десяти лет назад. Оказалось, что в процессе сна спинномозговая жидкость активно «вымывает» из мозга токсичные продукты работы клеток. Это происходит и во время бодрствования, но, как показало исследование, проведенное в 2019 году учеными из Бостонского университета, лишь во время сна эти «волны» очищения становятся поистине огромными.


«Когда вы спите в фазе медленного сна, очень активно работает гиппокамп. Происходит консолидация и перезапись материала, который вы обрабатываете. Поэтому я всегда студентам говорю: если вы послушали лекцию, поучаствовали в семинарах, прочитали книгу, обязательно хорошо поспите. То же самое после подготовки к экзамену», — объясняет Иван Хватов.


Хотя исследователи по-прежнему дискутируют о конкретных механизмах влияния сна на формирование нейронных «ансамблей» на молекулярном уровне, общие эксперименты и исследования подтверждают, что сон для этого необходим. А вот учиться во сне, слушая лекции, не получится. Правда, не так давно ученые подтвердили способность мозга запоминать иностранные слова во сне — однако лишь в конкретной фазе сна. Более того, эффект оказался хоть и достаточно заметным для фиксирования, но крайне незначительным.

Тотальная память — плохо, а забывание — хорошо


В своей непрекращающейся активности мозг постоянно «переписывает» наши знания. Каждый раз, когда мы сталкиваемся с новой задачей, мы переписываем старый опыт, добавляя к нему новый. С возрастом у нашего мозга становится все меньше ресурсов для того, чтобы добавлять новую информацию, поэтому пожилые люди «учатся» за счет того, что лишь перестраивают старый опыт — и поэтому часто забывают то, что раньше знали.

Можно ли «запастись» возможностями мозга? Это примерно то же самое, что спросить, а можно ли запастись витаминами на зиму, поедая фрукты летом. Тем не менее вы можете выработать привычку, предрасположенность к тому, чтобы регулярно приобретать новые данные и поддерживать «юность ума». Например, если человек регулярно занимается физкультурой, поддерживает мышечный тонус, дает себе полезные нагрузки, то, скорее всего, и в старости он будет здоровым. То же самое происходит с психикой и мозгом.


«Тренировки мозга должны быть настоящими нагрузками. Я своим студентам часто говорю: если вы прочитали книгу, и она показалась простой, то это плохая книга. Потому что она должна показаться вам немного сложной. Не запредельно сложной! Но у вас должны чуть повернуться „шестеренки”, извините за выражение. Значит, эта книга обеспечила вас фактами, которые не вписываются сразу в вашу картину мира. Вы сидите, страдаете по поводу того, как эти факты туда впихнуть. И это правильно! Иначе вы не нагружаете себя», — объясняет Иван Хватов.


В норме человек нарабатывает когнитивный резерв, который включается уже после 35 лет и позволяет сохранять интеллект на стабильным уровне и даже его повышать. В психологии есть понятия текучего (fluid) и кристаллизованного интеллекта. Текучий интеллект — способность обработки информации — начинает падать уже после 20 лет. А вот кристаллизованный интеллект — эрудиция, опыт, словарный запас, мудрость — нарабатывается еще до 70 лет, и лишь потом начинает медленно падать. В общем, к тренировке мозга нужно относиться как к физкультуре!

Отсюда закономерно возникает вопрос: лучше развивать в себе знания лишь по одной теме или по разным? «Очень сложно рыть яму только вглубь, неизбежно придется ее расширять, — отвечает Иван Хватов. — Как правило, вы начинаете накапливать информацию из смежных областей. И, кстати, так как за разные задачи у нас отвечают разные области мозга, то для его здоровья полезно переключать виды деятельности, активизировать разные области». Например, заниматься спортом.

Говоря о наших способностях запоминать информацию, важно учитывать и то, что память у нас бывает разная. В частности, к эксплицитной памяти относятся такие виды, как семантическая и эпизодическая. Семантическая знает факты и не помнит ничего постороннего, например когда именно и при каких обстоятельствах вы узнали формулу воды или историческую дату, ведь эти детали роли не играют. Если бы забывания не происходило, если бы мы идеально помнили информацию, мы бы не смогли ее применять в меняющихся условиях.

Из такой пластичности мозга можно сделать и удручающий вывод — если вы хотите навсегда запомнить какое-то событие таким, как в первый раз, старайтесь его не вспоминать, не «прокручивать» в голове. Иначе ваш мозг обязательно изменит детали.


«Эпизодическая память неизбежно стирается. Помнить все — это ненормально. У психолога Александра Романовича Лурии в книге “Маленькая книжка о большой памяти” описан случай человека, который помнил все и сошел с ума. В процессе жизни у вас формируется автобиографическая память — по периодам. Часто в этих периодах есть так называемые фотографические воспоминания. Вам кажется, что вы не помните происходившее ни до, ни после, но в деталях можете воспроизвести первый поцелуй, первый поход куда-то или приезд в другой город — что-то очень эмоционально насыщенное. Исследования показывают, что в таких воспоминаниях множество неточностей, но фактически это то, что формирует вашу личность и индивидуальность», — дополняет Иван Хватов.


Забывание — не пассивный процесс утраты, а целенаправленный с точки зрения нейрофизиологии процесс, причем очень тщательно сегодня изучаемый, это одна из задач современной нейрофизиологии.

Нерешенные проблемы нейронауки


Стоит взглянуть на список «Нерешенных проблем нейронауки», и создается впечатление, что мы пока вообще ничего толком не знаем о мозге. Помимо памяти и обучения в этом списке упомянуты сон и сновидения, сознание и принятие решений, родной язык, изучение других языков и многие другие.

С каждым годом ученые с помощью современных технологий находят способы все точнее наблюдать мозг на всех уровнях — от молекулярного и клеточного до масштабов всего органа. Так, в прошлом году одним из главных событий в сфере нейробиологии стала публикация результатов работы группы ученых из Южно-Калифорнийского университета. Им удалось в реальном времени увидеть формирование эмоционально окрашенных воспоминаний в мозге живой рыбы.

Чем больше будет возможностей для наблюдения за работой мозга, тем быстрее будет сокращаться список нерешенных проблем. Впрочем, наверняка принцип «увеличения точек роста» справедлив и в этом случае — с новыми знаниями откроется еще больше новых вопросов.
Источник: naked-science.ru
Поделись
с друзьями!
684
9
6
7 месяцев

Искусство искусственного интеллекта: кого считать автором в эпоху творчества нейросетей?

Искусственный интеллект не только совершенствует сервисы «Яндекса», помогает врачам ставить диагнозы и предсказывает стоимость ценных бумаг. Нейросети замахнулись на святая святых человека — на статус художника. Рассказываем, откуда алгоритм берет образы для своих произведений, как разбираются с правами на них, к каким этическим проблемам это приводит и сколько стоят картины машин.


Создать художественное произведение — изображение, мелодию или стихотворение — с недавних пор стало делом буквально одного клика. Для этого нужно базово разбираться в программировании — понимать, какой готовый алгоритм нужно взять, собрать базу референсов для творчества машины и поставить ей задачу, как именно использовать полученные знания. К слову, недавно выяснилось, что искусственный интеллект (ИИ) год заменял штатного дизайнера в студии Артемия Лебедева и, как сообщает студия, неплохо справлялся.

Но и это не предел. Использование искусственного интеллекта помогает художникам становиться знаменитыми. Или становится художниками тем, кто об этом только мечтал. И зарабатывать деньги. А иногда — очень много денег.

Так, в октябре 2018 года в Нью-Йорке прошел очередной аукцион Christie’s, но с одной особенностью — это были первые торги такого уровня, на которых выставили картину, созданную, согласно аннотации, искусственным интеллектом.
Произведение представляло собой незаконченный портрет мужчины, на вид жившего в XVIII-XIX веке.

Силуэт размытый, носа нет, вместо рта — темное пятно. Подпись в правом нижнем углу сообщала часть названия алгоритма, который эту картину создал: min G max D x [log (D(x))] + z [log(1 — D (G(z)))]

Перед торгами аукционный дом оценил напечатанную на принтере картину «Портрет Эдмона Белами» в 7000-10 000 долларов. Продали ее в тот вечер за 432 500 долларов.

Кто научил ИИ писать картины


Искусственный интеллект работал над «Портретом Эдмона Белами» не один, а вместе с тремя 25-летними французами, которые называют себя арт-группой Obvious. Они создали серию таких работ — нарисовали целое несуществующее семейство Белами. И проданное на аукционе Christie’s произведение было не первым из этой серии, на котором они заработали: картина «Графиня Белами» за полгода до этого принесла им 11 430 долларов.

Entertainment

Фамилия Белами взята не просто так: первичный алгоритм, с помощью которого была создана серия этих работ, написал разработчик по имени Ян Гудфеллоу (Goodfellow). На русский его фамилия переводится как «хороший приятель», что по-французски будет bel ami. То есть вся серия картин стала своего рода оммажем разработчику.

Сам факт продажи картин, созданных с помощью ИИ, не редкость. На местном аукционе в Сан-Франциско в 2016 году продали сразу 29 работ команды разработчиков ИИ из Google. Их общая стоимость составила 98 000 долларов, самую дорогую оценили в восемь тысяч.

В 2017 году за 16 000 долларов купили картину, над которой работала предельно самостоятельная программа AICAN — она генерирует картины, оценивает уровень их креативности и сама дает работам названия. На выставке в индийской галерее Nature Morte живопись ИИ продавали в диапазоне цен от 500 до 40 000 долларов за работу.

Онлайн-галерея SuperRare на регулярной основе торгует объектами искусства, созданными «с помощью цифровых инструментов». Они продаются исключительно в интернете и за криптовалюту. Кроме прочего, площадка гарантирует защиту купленного произведения от подделок: все права на работы защищены блокчейном, то есть система постоянно проверяет интернет на наличие аналогичных изображений — незаметно выложить в сеть дубликат не получится. На сайте онлайн-галереи утверждается, что к началу июля они продали более 7200 работ на общую сумму порядка миллиона долларов.

Историческим событием в продаже картины «Портрет Эдмона Белами» было то, что картину выставил на торги именно аукционный дом Christie’s — одна из двух главных мировых площадок арт-рынка. В мире искусства это автоматически означает признание — как для художника, так и для нового направления в искусстве.

При этом ИИ востребован в творчестве уже порядка пятидесяти лет. Считается, что первым, кто использовал алгоритмы для создания художественных произведений, был британский художник Харольд Коуэн. С 1973 года он разрабатывал программу AARON, которая создавала уникальные картины, следуя набору определенных правил. Работы Коуэна были замечены в арт-сообществе и довольно широко выставлялись, в том числе в одной из главных британских галерей — Tate.

Nonprofits & Activism

За Коуэном последовали многие художники/разработчики, которые создавали картины с помощью ИИ, но на качественно новый уровень такое творчество вышло только в XXI веке, когда упомянутый Ян Гудфеллоу в 2014 году написал алгоритм «Генеративно-состязательная сеть» — Generative adversarial network (GAN).

Как творит ИИ


В случае с созданием творческих произведений искусственным интеллектом называют нейронную сеть (она же алгоритм машинного обучения). Это частный случай ИИ.

Нейросеть представляет собой множество простых, соединенных между собой элементов, которые складываются в примитивное подобие мозга. Она анализирует загруженные в ее базу произведения, распознает образы, технические приемы, приметы стиля, а затем, согласно прописанному заданию, использует полученные знания для создания картин.

Алгоритм машинного обучения может находить зависимости, характерные черты и правила в любом множестве загруженных объектов — будь то живопись, музыка или стихи. Обработав большой объем данных, нейросеть обобщает их и делает выводы разными способами.

Среди итогов обучения нейросети может быть, например, знание о размерах наиболее типичного мазка кисти на загруженных картинах импрессионистов. Или о частоте использования обсценной лексики в поэзии раннего Егора Летова.

Чему именно будет учиться алгоритм, определяет специалист по анализу данных. Он же программирует алгоритм на то, как их использовать. Например, писать стихи, похожие по размеру и лексике на те, что загрузили в базу. Или непохожие. Подражать конкретному художнику или компилировать стилистики сразу нескольких у нейронных сетей получается весьма неплохо.

Работа проекта Deep Dream от Google по мотивам творчества Ван Гога.

Например, нейронная сеть, с помощью которой создавалась картина «Портрет Эдмона Белами», обучалась на 15 000 портретных работ, написанных в период с XIV по XX век.


Наиболее успешным (талантливым?) алгоритмом, лежащим в основе большинства современных программ для создания любых художественных произведений, считается генеративно-состязательная сеть (GAN) Яна Гудфеллоу.

Архитектура GAN состоит из двух нейросетей — генератора и дискриминатора.
Первая выступает в роли художника — использует освоенные приемы для создания изображений. Вторая, дискриминатор, — в роли критика: сравнивает то, что получилось у генератора, с оригинальными работами. Если дискриминатор не может отличить получившееся изображение от картины, написанной человеком, то результат считается принятым. Если дискриминатор решил, что предложенная картина — подделка, то генератор начинает работу заново.

Можно настроить дискриминатор так, что по итогам оценки получившейся работы он будет указывать, что именно вызвало у него скепсис. Генератор примет это к сведению и больше не повторит ошибку. То есть продолжит учиться и совершенствоваться.

GAN не единственный алгоритм, который успешно справляется с творческими задачами, у него довольно много коллег по цеху. Например, другая популярная нейросеть, которая создает такого рода произведения, — CAN, креативно-состязательная сеть. В ее основе тоже две нейросети — генератор и дискриминатор, но второй в этом случае отбирает получившиеся произведения так, чтобы они не были похожи ни на одну работу, загруженную в базу. С помощью CAN создают стилистически уникальные произведения.

Работа программы AICAN, использующей креативно-состязательную сеть (CAN)

В некотором роде аналитические способности у нейронной сети выше, чем у любого профессионального искусствоведа. Она отметит все мельчайшие детали и особенности произведения и соотнесет их между собой. Но, несмотря на это, ИИ совершенно не способен вычленять смыслы и создавать связный нарратив.

То есть составить строку, похожую на произведения поэтов-символистов, он может, но даже близко не понимает, что она будет значить. Точно так же и с живописью — ИИ может проанализировать технику Моне, найти часто встречающиеся образы, сымитировать их и отправить на печать, но будет делать это механически, неосознанно. Во всяком случае, так всё работает пока.

Что есть творчество


Сегодня ИИ в абсолютном большинстве случаев — инструмент, которым управляет человек: готовит базу для обучения нейросети, задает параметры, согласно которым она будет творить, отбирает результаты. Примеры работ, когда алгоритму предоставляют максимальную свободу, — в большей степени эксперимент.

По Аристотелю, искусство «есть не что иное, как творческая способность, руководимая подлинным разумом». Многократно видоизменявшееся и усложнявшееся определение искусства в любой интерпретации оставалось видом или результатом деятельности, которым руководит сознание человека.

Очевидно, что в творчестве, связанном с ИИ, за сознательность отвечает человек. Рассуждая так, говорить о творчестве именно ИИ не приходится — это сложный, настраиваемый инструмент.

Дискуссионный вопрос по поводу такого рода творчества: являются ли работы, созданные совместно с ИИ, искусством в полном смысле слова?

Дмитрий Булатов, художник, куратор и организатор проектов в области Science Art и новых медиа, о художественной ценности такого рода произведений:

«Проекты, которые создаются художниками с участием разного рода нечеловеческих агентов (искусственные и естественные нейронные сети, разного рода машинерия и т. д.), в принципе могут считаться произведениями искусства. Всё зависит от нюансов. Произведением искусства здесь является проект в целом, потому что в искусстве сегодня не столь важна визуализация чего бы то ни было, сколько сам акт этой визуализации.

И я бы точно не переоценивал художественную значимость этих картин. По очень простой причине.

В искусственном интеллекте нас должно интересовать не то, что ИИ тоже может, скажем, имитировать стиль импрессионистов или кубистов, но то, что может только искусственный интеллект. То множество неочевидных возможностей и новых поэтик, которые стоят за ИИ. А не его способность к подделкам».

Кто творец


Еще сложнее понять, кто из людей, причастных к работе над условной картиной, главный творец: тот, кто придумывает концепцию, отбирает результаты или пишет код?

И если главной творческой составляющей процесса оказывается написание кода, с помощью которого можно создавать талантливые высказывания, то какого рода это искусство — художественное или техническое?
У директора онлайн-фестиваля EverArt Weekend, одна из секций которого посвящена творчеству ИИ, Люси Виноград нет сомнений по поводу того, что работы, созданные с помощью ИИ, — искусство:

«Создание картин с помощью технологии машинного обучения безусловно творческий процесс. Причем творчеством можно назвать и вклад разработчика, который должен, что называется, „написать код красиво“, и работу художника, который вкладывает в произведение смыслы. При этом важная разница в их работе в том, что разработчик создает функциональную вещь, а художник — наоборот, что-то не несущее в себе функциональности: „цели“ и „задачи“ у искусства обычно нет, искусство — это опыт зрителя».

Современные художники, работающие с нейросетями, тоже активно учатся использовать ИИ как способ для оригинального высказывания.

Например, принимающий участие в фестивале Майк Тайка, художник и инженер Google, в 2017 году загрузил в нейросеть GAN тысячи портретных фотографий с фотохостинга Flickr и начал компилировать из них страшноватые и отчасти реалистичные изображения людей, которых никогда не существовало. Проект назывался «Портреты воображаемых людей». Безусловно, получилось не только пугающе, но и многозначительно.

Иван Ямщиков — исследователь ИИ и один из авторов альбома «Нейронная оборона», для которого нейросеть написала тексты песен, имитирующих лирику Егора Летова. Он считает, что в творческом процессе с участием ИИ не стоит разделять роли художника и человека, который отвечает за программирование алгоритма. Ямщиков так описывает задачи художника, который использует нейросеть как инструмент:

«Чтобы создать произведение искусства с помощью машинного обучения, нужно придумать концепцию, собрать данные, выбрать подходящий алгоритм, обучить его, создать с его использованием конечное произведение. Сам алгоритм искусством обычно не является, он — элемент или составная часть художественного высказывания».

4 июля в рамках онлайн-дискуссии на фестивале EverArt Weekend обсуждают, как люди и ИИ могут создавать совместные художественные проекты и можно ли называть искусством работы GAN. Кроме прочих в обсуждении участвует и арт-группа Obvious, хедлайнер секции «Нейросетевая апофения», посвященной ИИ-творчеству. После аукциона Christie’s они, с одной стороны, стали заметными фигурами в мире современного искусства, а с другой — получили массу претензий от ИИ-сообщества.

Чужой код


В начале карьеры Obvious не совсем соглашались с тем, что в создании картин с помощью ИИ творец именно человек. Во всяком случае, официальная их позиция звучала иначе.

Даже девиз команды звучал несколько футуристично: «Творчество не только для людей».
Среди художников есть мнение, что картина Obvious попала на аукцион Christie’s (и в итоге прославила арт-группу) только за счет их довольно провокационного позиционирования своего творчества в начале карьеры.

Созданная в апреле 2017 года арт-группа в ранних пресс-релизах прямо писала, что их картины создает ИИ. Роль человека при этом была как бы второстепенной. И для Christie’s такая легенда отлично сработала: картина далеко не самых опытных ИИ-художников оказалась на главных арт-торгах мира, а они сами — в заголовках прессы.

Но на этом история с «Портретом Эдмона Белами» не закончилась. Тот аукцион стал не только первым случаем, когда за художественное произведение, связанное с ИИ, заплатили шестизначную сумму, но и поднял сложный этический вопрос.

Чтобы алгоритм GAN выполнял конкретную задачу — например, создавал картины в определенной стилистике, — его нужно доработать и обучить. 19-летний ИИ-энтузиаст Робби Баррат занялся этим и научил алгоритм GAN рисовать в манере, близкой к импрессионизму. После этого он выложил нейросеть в открытый доступ на ресурсе для разработчиков GitHub: подобная практика широко распространена среди программистов, ее цель — совершенствовать код. Так его нашел Кассель-Дюпре, отвечавший за техническую часть работы в арт-группе Obvious.

Так работал алгоритм Баррата

Баррат не возражал против использования его кода другими, но, когда стало известно, что созданную его алгоритмом картину продают на аукционе Christie’s за почти полмиллиона долларов, ситуация усложнилась.
За год до продажи «Портрета Эдмона Белами» Кассель-Дюпре в переписке на GitHub обращался к Баррату с просьбой доработать код. Баррат тогда написал, что занят, и новый код не выложил. В итоге Obvious доработали код самостоятельно, хотя по их собственному признанию в интервью The Verge изменения были незначительными. Арт-группа не отрицает, что использовала код Робби Баррата.

В ИИ-сообществе действия Obvious преимущественно осудили: они получили деньги и известность за работу, которую, по сути, выполнил Баррат. При этом самого программиста не упоминали до тех пор, пока им на это не стали указывать.
Художники, которые используют ИИ, отзывались о работах группы как об очень слабых, а успех их связывали исключительно с вызывающим самопиаром. Так как «Портрет Эдмона Белами» был в значительной степени создан за счет усилий Роберта Баррата, многие назвали эту картину подделкой.

Заимствования среди художников не редкость, и, например, Марсель Дюшан не упоминал в соавторах работы «Фонтан» дизайнера, спроектировавшего использованный им писсуар. Но проблемы авторства «Портрета Эдмона Белами» это не разрешает

Если ИИ-сообщество настаивает на том, что автором портретов семейства Белами правильнее назвать Баррата, то алгоритм оказывается больше, чем просто инструмент художника. Получается, что разработчик создает цифрового художника, который может на потоке выдавать произведения искусства.
А группа Obvious — просто агент, который разместил одну из работ художника в позолоченной рамке и успешно продал Christie’s.

Если судить произведение Obvious по аналогии с писсуарами Дюшана, то художник и автор — тот, кто нашел для картины подходящее смысловое обрамление. И тогда авторство арт-группы не должно вызывать вопросов, а все претензии ИИ-художников и комьюнити в целом не обоснованы.

Ответов пока нет. А на вопрос, возможно ли, что искусственный интеллект будет создавать работы, которые люди оценят как искусство, даже с учетом того, что в них не будет привычного обмена духовным опытом, художник Дмитрий Булатов отвечает:

«Антропоцентричная парадигма сегодня пересматривается во многих областях.

Это касается и искусства. Нюанс заключается в том, что мы отличаем произведение искусства от других вещей благодаря тем же критериям, при помощи которых мы отличаем человеческое от нечеловеческого. А как раз с этими критериями у нас проблемы: свои суждения об искусстве мы, как правило, обосновываем с точки зрения человека (экспертов, институций и т. д.). Мне кажется, что этот подход нужно менять. Но существенные сдвиги начнутся тогда, когда мы сможем пересмотреть определения „нормативных“ состояний человека. И тогда мы ответим на вопрос, возможно ли искусство нечеловеческих систем.

Можем ли мы представить себе искусство без человека? Готовы ли мы к этому? Готовы ли мы отказаться от точки зрения на искусство как на продукт, создаваемый одними людьми для других людей?
Ведь такой подход будет возможен только на условиях симметрии в отношениях с окружающим миром. А это, в свою очередь, будет означать, что нам придется положить конец своему белковому шовинизму — в частности, в искусстве.

Так что можно с уверенностью сказать, что изменения в поле искусства [в ближайшем будущем] будут невелики, но лишь до тех пор, пока мы имеем дело с нормативным понятием человека».
Источник: knife.media
Поделись
с друзьями!
325
10
12
8 месяцев

Природный Tinder и вымогательство мёда: как общаются животные

Странные способы, которые используют жирафы, пчёлы, бегемоты, летучие мыши и другие существа.


Гусеницы поют муравьям, чтобы обмануть их



Обычно животные общаются со своими сородичами. Но некоторые могут «говорить» и с представителями других видов. А иногда — даже лгать им.

Например, гусеница бабочки Phengaris alcon скребёт своим брюшком и создаёт особые звуки. Так она имитирует пение королевы красных муравьёв. В результате муравьи-солдаты, услышавшие песню гусеницы, начинают её защищать.

Бедняги даже готовы убивать своих товарищей, чтобы уберечь обманщицу.

Рыбы фугу чертят ритуальные круги



У берегов Японии дайверы как минимум с 1995 года регулярно обнаруживают под водой «таинственные круги» диаметром приблизительно около двух метров. Долгое время было загадкой, что это такое — неужели от посланий на полях с кукурузой инопланетяне перешли к морским глубинам? Но наконец учёные догадались, что это дело рук, а точнее плавников рыбы фугу.

Самцы плавают по морскому дну, веерно двигая ими, и создают удивительно сложные рисунки — это занимает от семи до девяти дней. Неплохо для рыбки длиной 12,7 см. Затем они украшают своё творение обломками раковин и мелкими камешками. Узоры эти являются гнёздами, привлекающими самок фугу. И после оплодотворения те откладывают яйца в центре круга.

Раки-богомолы используют световые сигналы



Раки-богомолы обладают уникальным зрением: они видят одновременно в обычном, ультрафиолетовом и инфракрасном спектрах, а ещё различают виды поляризации света, на что ни одно другое животное не способно.

Долгое время учёные не понимали, зачем это им нужно. Пока наконец не выяснили, что эти членистоногие посылают друг другу световые сигналы. Рак отражает поляризованный свет от своего тела, буквально «семафоря» своим товарищам.

Исследователи изучали экземпляры Haptosquilla trispinosa и обнаружили, что те для этого используют свои придатки, на которых находятся ярко-синие пятна, состоящие из светоотражающих клеток. Последние особым образом рассеивают лучи по поверхности пятна, упорядочивая световую волну. И членистоногие направляют её в сторону представителей своего вида.

Этот сверхсекретный код раков-богомолов позволяет им общаться без привлечения внимания хищников, так как прочие морские животные не могут видеть поляризованный свет.

Гекконы вымогают у цикад мёд, кивая им


Pets & Animals

Гекконы, обитающие на Мадагаскаре, придумали, как заказывать еду, которую закидывают прямо к ним в рот, задолго до появления современных приложений доставки. Для этого ящерица кивает цикаде — насекомому, которое питается соком растений и запасает его в брюшке в виде сладкой жидкости, известной как медовая роса. И когда геккон даёт понять, что хочет отведать этого лакомства, насекомое выделяет его прямо в рот рептилии.

Пока неясно, почему цикады делятся угощением с гекконом. Существует предположение, что присутствие голодных гекконов поблизости может отпугивать других хищников. В конце концов, лучше отдавать им часть своей добычи, чем быть съеденным целиком — такой вот рэкет в миниатюре.

Летучие мыши пищат друг на друга



Летучие мыши — весьма социальные животные, которые активно общаются между собой голосом. Несмотря на то, что их писк звучит одинаково для человеческого уха, на самом деле он очень разнообразный и используется в самых разных ситуациях.

Учёные проанализировали больше 15 000 вокализаций египетских фруктовых летучих мышей и обнаружили, что они постоянно передают друг другу информацию, когда конфликтуют из-за самок, пищи, места для отдыха и сна. То есть вместо того, чтобы драться, мыши… спорят.

Голос — не единственный способ налаживания отношений. Ещё самцы летучих мышей часто предлагают самкам угощение в обмен на секс. Всё вполне разумно: кто даму угощает, тот её и танцует.

Бегемоты общаются с помощью рёва и фекалий



Бегемоты кажутся многим милыми животными, хотя на самом деле они весьма опасны. И дело не только в том, что они могут перекусить пополам или затоптать любого, кого не хотят видеть в своей компании. У этих гигантов есть и более неприятные способы показать чужакам, что им тут не рады.

Учёные установили динамики, имитирующие рёв, рядом с местами обитания нескольких семей бегемотов в заповеднике Мапуту. И выяснили, что гиппопотамы вполне способны узнавать чужие голоса и прогонять их обладателей.

Их громовой рёв слышно на расстоянии больше километра. И когда к бегемоту приближается другая незнакомая особь, тот сначала подаёт таким образом сигналы, чтобы гость ушёл. А если тот не понимает намёков, бегемот начинает бешено размахивать хвостом и испражняться, разбрасывая фекалии на десятки метров вокруг себя. Запах информирует гостя, что это чужая территория.

Морские слизни пускают в воду любовные коктейли



Морские слизни имеют глаза, но не очень хорошо видят. Поэтому они дают понять, что неравнодушны к кому-то, другими способами. Например, выпускают в воду вокруг себя коктейль из белков и феромонов, действующий на других слизней как нечто среднее между «Шанель №5» и лекарством от эректильной дисфункции. Сотни существ собираются вместе и устраивают оргии, длящиеся по нескольку дней.

Эти ребята — гермафродиты, они обладают и мужскими, и женскими половыми органами. Во время спаривания слизни колют друг друга между глаз острым выростом, называемым генитальным стилетом, вводя коктейль из простатической жидкости подруге (или другу) прямо в лоб.

Учёные до сих пор не уверены, зачем слизни делают друг другу инъекции спермы в голову, но предполагают, что вещество это содержит не только сперматозоиды, но и специальные гормоны, которые увеличивают вероятность успешного оплодотворения.

Иногда, правда, слизни промахиваются и попадают не в голову, а в пищеварительный тракт, который находится где-то поблизости, и сперма переваривается. Ну что же, надо целиться лучше.

Жирафы пробуют мочу своих избранниц на вкус



Если вы думаете, что только среди людей есть извращенцы, то это не так. Самцы жирафов, например, по феромонам в моче самки определяют её плодовитость.

Согласно исследованию, опубликованному в журнале Animals Found, жирафу в среднем приходится перепробовать мочу 150 самок, прежде чем он найдёт ту, что готова к спариванию.

Пчёлы водят хороводы и производят электричество



Если вы думаете, что пчёлы просто так зависают в воздухе, кружат и выписывают восьмёрки, то ошибаетесь. Движения для этих насекомых — способ передавать информацию друг другу внутри колонии.

Когда рабочие пчёлы находят что-то съедобное, например цветущее растение, они начинают особый танец, чтобы указать на источник пищи своим товарищам. Они выписывают в воздухе восьмёрки, круги или полумесяцы. Вид фигуры зависит от расстояния от источника еды до улья: восьмёрка — 150 метров, круг — около 100, а серп — 50.

Вдобавок медоносные пчёлы накапливают электростатический заряд, когда их крылья трутся во время полёта. А потом, прикасаясь друг к другу усиками, они высвобождают этот заряд и таким образом тоже подают прочим обитателям улья сигналы. То есть эти насекомые общаются друг с другом, буквально ударяя товарищей током.
Источник: lifehacker.ru
Поделись
с друзьями!
748
2
5
10 месяцев

Трованты — удивительные «живые» камни Румынии, поставившие ученых в тупик

Эти необычные камни можно встретить в Румынии, а точнее, в центральных и южных районах страны. Люди называют их тровантами и наделяют чертами живых существ. Местные жители рассказывают гостям, что эти камни умеют расти, размножаться и даже дышать, что обеспечивает неиссякаемый поток туристов. Ученые, много лет исследовавшие румынские трованты, отрицают их биологическое происхождение, но, несмотря на это, пока не могут объяснить все процессы, происходящие с этими камнями.


Трованты представляют собой округлые или продолговатые обтекаемые минеральные образования, практически лишенные крупных выступов и сколов. Основной материал такого камня — распространенный на Земле повсеместно природный материал — песчаник. Но от других глыб из этого минерала трованты отличаются очень сильно.


Главное мистическое свойство этих круглых камней — их рост. Трованты на самом деле увеличиваются в размерах, причем как грибы, после хорошего дождя. В румынских деревнях любят рассказывать о том, что небольшой камень может за одну дождливую ночь вырасти в два раза, а большой — на треть. Конечно, это всего лишь байки, но они не лишены основания.


Тровант незначительно увеличивается в размерах, если его окружает влажная среда, но очень и очень скромно, часто даже незаметно для глаза. Чем меньше камень — тем стремительнее его рост. Заметить, как подрастают самые большие трованты, весом несколько тонн, можно, лишь воспользовавшись измерительными приборами.


Геологи смогли объяснить это странное явление, в котором нет ничего волшебного. Если аккуратно распилить тровант пополам, то можно увидеть отличающиеся по толщине и цвету кольца, как на древесном спиле. В самом центре находится небольшое твердое ядро. Слои эти состоят не только из песчаника — оттенки разных цветов им придает высокое содержание разных минеральных солей.


Когда тровант намокает, материал, из которых он состоит, расширяется и камень «растет». В долгосрочной же перспективе увеличение размеров трованта связано с постепенной цементацией песка на его поверхности — столетие за столетием, слой за слоем.


Но есть у тровантов особенность, которую пока наука объяснить не может. Эти камни умеют размножаться и происходит это способом, очень похожим на почкование. Сначала на поверхности глыбы появляется бугорок, который увеличивается в размерах, а затем отпадает от материнского камня и становится новым тровантом.


Явление это настолько необычно для мира минералов, что одно время даже маститые ученые задумывались о том, не имеем ли мы дело с еще не открытой нами неорганиеской формой жизни. Но как бы нам не хотелось верить в чудеса — все гораздо прозаичнее, и мы просто имеем дело с не описанным ранее геологическим процессом.


Люди, столетиями живущие рядом с тровантами, не испытывают к ним никакого мистического благоговения. За сотни лет они привыкли к этим странным камням и вряд ли верят в истории, которые рассказывают о них любопытным туристам.


Доказательством небрежного отношения к удивительным каменным соседям можно считать то, что трованты используют в качестве строительного и отделочного материала. Кроме этого, на деревенских кладбищах юга Румынии шарообразные глыбы устанавливают в качестве памятников.


В начале 2000-х годов правительство страны, наконец, обратило внимание на трованты и взяло их под свою защиту. Наиболее крупные из них были описаны и занесены в реестр, как памятники природы. В 2006 году в районе Вылча, недалеко от города Костешть, был открыт «Музей тровантов», куда со всей страны свезли самые необычные и крупные камни. Самые эффектные трованты в этой экспозиции под открытым небом достигают 10 метров в высоту.


Камни, похожие на трованты, есть и в других местах планеты: в Казахстане, России и Лаосе. Они отличаются от румынских по химическому составу и цвету, но очень схожи своими свойствами.
Поделись
с друзьями!
1072
1
11
11 месяцев

Почему «британские учёные» до сих пор исследуют всякую дичь?

Термин «британские учёные» появился в начале нулевых и стал популярен. Так называют исследователей, которые проводят нелепые эксперименты с никому не нужными результатами.


Интересно, что подобный термин есть не только в русском языке. Китайцы говорят о «британских исследователях». А вот англичане в таком же смысле употребляют выражение «наука Микки Мауса» — Mickey Mouse science.

Научный журналист Алексей Водовозов рассказал в своей лекции на канале ScienceVideoLab, кому и зачем нужны абсурдные эксперименты и их нелепые, но громкие результаты. А мы законспектировали.

Учёные привлекают внимание СМИ, чтобы вызвать интерес к исследованиям и получить финансирование


Когда‑то исследования интересовали лишь самих учёных и новости о ходе экспериментов и их результатах не выходили за пределы научной среды. Но сейчас любое серьёзное исследование — это медийный процесс. Так происходит потому, что обычным людям интересно, какие сегодняшние открытия могут изменить повседневную жизнь. Общество ждёт прорывов и перемен.

Но у этого процесса есть и обратная сторона. Сегодня мы привыкли оценивать эффективность исследований по степени их известности. Чем больше говорят об учёном или его работах — тем, по мнению общества, полезнее его эксперименты.

Со временем появился такой показатель, по которому стали оценивать эффективность исследовательских групп, — медийность. То есть насколько о вас говорят СМИ, кого из вас приглашают на ток‑шоу, кто там из вас герой на первых страницах.

Учёные вынуждены играть по новым правилам. Чем больше упоминаний в СМИ, тем больше вероятность получения грантов.

Но сложно постоянно сообщать СМИ что‑то интересное о ходе экспериментов — в них больше рутины, чем чудес. Тем более если исследования рассчитаны на долгий срок — лет на 5, а то и на 10–20. Быстрых результатов нет, но информация нужна постоянно. Поэтому:

Научные группы готовы сообщать о любом, даже незначительном продвижении

Так работа учёных превращается в сериал.

Ну например: давайте мы опубликуем доклинические исследования. А потом, когда уточним результаты, снова об этом сообщим. Если у нас не получится, это будет инфоповод: смотрите, мы опровергли свои предварительные исследования. Либо наоборот — мы их подтвердили. В любом случае появляется инфоповод. То есть любой результат для медиа — это хорошо.

Учёные озвучивают странные результаты непонятных экспериментов


Сложно проводить серьёзные эксперименты, когда не хватает финансирования, поэтому учёные идут на хитрость. Они проводят какое‑нибудь громкое исследование, главное предназначение которого — стать основой для интересного материала в СМИ. Эксперимент, где можно быстро получить результаты, которые легко осветить в медиа. В итоге научная группа становится известной и может претендовать на крупный грант. А он пойдёт уже на фундаментальные работы.

С 1982 года британский медицинский журнал The BMJ перед Рождеством посвящает целый номер несерьёзным результатам абсурдных исследований. У журнала всегда достаточно информации — некоторые учёные понимают, что их результаты могут быть показаны только в юмористическом рождественском выпуске, и не хотят упускать шанса на публикацию.

Так, однажды журнал написал о реально проводившемся исследовании, в котором британские учёные выяснили: в чашку традиционного английского чая нужно добавить ровно 40 мл молока, чтобы напиток был окрашен идеально.

Далеко не все исследования идиотские. Например, в ходе одного из них изучалось, какую музыку играть в операционной. Да, есть разница: там главный момент, чтобы нравилось всей операционной бригаде, а не только хирургам. Вот такой результат.


Исследователи проводят нормальные эксперименты, которые со стороны выглядят смешно


Существует специальная награда для абсурдных исследований — Ig Nobel Prize. На русский её название переводят как Игнобелевская или Шнобелевская премия. Среди её номинантов встречаются и полезные работы, которые выполнены тщательно, а их результаты могут оказаться интересными.

Например, Ахмед Шафик из Каира в 2016 году изучал свойства мужского белья. На первом этапе он пытался определить, как влияет материал нижнего белья на привлекательность самцов крыс. Для этого учёный собственноручно сшил или связал множество комплектов трусов для крыс из хлопка, шерсти и искусственных тканей.

Вот такая работа кропотливая — я бы даже сказал, сделанная с любовью к своей специальности.

Результаты показали, что самки не пугаются хлопка и шерсти. А вот синтетика их отталкивала — самцы в искусственном белье не пользовались популярностью. Возможно, в этом виновато статическое электричество. Но факт: самцам не нужно носить синтетическое бельё. Интересный эксперимент, который почему‑то попал в категорию нелепых опытов.

Пресс‑служба неточно доносит до СМИ смысл и результаты эксперимента


Впервые с этим столкнулись именно британские учёные — исследователи из университета Кардиффа. Они проследили всю цепочку от организации научных опытов до публикаций их результатов в СМИ.

Экспериментаторы не сами публикуют результаты своих трудов — они отдают их пресс‑службе университета. На этом уровне происходит самое большое число искажений, потому что в PR‑службу иногда берут случайных людей. Вчера они писали обзоры о моде, а сегодня — отчёты о научных исследованиях. Им важны не факты, а яркие заголовки и медийный эффект.

Например, специалисты изучают, как ведут себя раковые клетки в хвосте мыши, и находят способ замедлить их рост. Но пресс‑служба опускает условности: не пишет, что речь идёт только о мышах, не сообщает, что исследования принесли лишь первые осторожные результаты. И выпускают пресс‑релиз, где говорится о том, что учёные нашли способ победить рак. Но реальность очень отличается от этой глянцевой картинки.

Такая же проблема с некомпетентными журналистами. Они не пытаются разобраться в сути эксперимента, а формулируют громкие заголовки. К тому же мало кто из пишущих новости будет читать статью в научном журнале, чтобы разобраться в материалах исследований. Статьи для СМИ они делают на основе тех самых пресс‑релизов, составленных некомпетентными пиарщиками.

А что же там на самом деле произошло — никто этого читать не захочет. Не медийно, не ярко, не эмоционально, не трендово.

Журналистам нужны сенсации, и они сами придумывают исследования и результаты


Ещё в XIX веке некоторые СМИ размещали объявления о найме работников, в которых писали: «Нужны редакционные мужики, умеющие изображать “голос народа” в безграмотных письмах в редакцию и добровольных корреспонденциях». Это факт — старые газетные страницы с такими вакансиями сохранились до наших дней.

То же самое часто происходит и сегодня. Значимые новости в мире науки появляются не каждый день. Невозможно регулярно, по расписанию, совершать важные открытия. Тем более — в медицинской науке, где нужны тщательные исследования и множество проверок их результатов. А СМИ выходят ежедневно. Чтобы их читали, нужно писать о сенсациях. Поэтому журналисты иногда сами придумывают и событие, и его трактовку.

Иногда мы действительно многого не можем понять. Мы не можем открыть, например, как действует парацетамол. Представляем примерно, но есть куча вопросов. У нас масса неоткрытого, но новости должны быть каждый день, их должно быть много, они должны попадать в рассылку и обсуждаться. Нужен массовый продукт, а если его нет, «редакционные мужики» его создают.

Так рождаются лже‑сенсации. Например, в 50‑х годах ХХ века в медицинских изданиях писали о том, что курение полезно для астматиков — якобы есть научные данные о том, что сигаретный дым помогает им победить болезнь.

Есть важное правило: чем сенсационнее новость — тем тщательнее нужно искать её источник. Если автор не указан — новости не нужно верить. Не бывает, чтобы революционное, масштабное и яркое открытие было анонимным. Нужно найти автора — и потом уже решать, заслуживает ли он доверия.

Так называемая «британскость» есть не только со стороны учёных, но и со стороны СМИ. Причём сейчас они соревнуются, кто из них более «британский». А проигрываем мы — читатели. И журналисты, потому что искать что‑то корректное, научно обоснованное становится с каждым годом всё тяжелее. Надеюсь, выплывем вместе.

Алексей Водовозов. Научный журналист, медицинский блогер. Врач-терапевт, токсиколог.
Источник: lifehacker.ru
Поделись
с друзьями!
483
1
17
13 месяцев
Уважаемый посетитель!

Показ рекламы - единственный способ получения дохода проектом EmoSurf.

Наш сайт не перегружен рекламными блоками (у нас их отрисовывается всего 2 в мобильной версии и 3 в настольной).

Мы очень Вас просим внести наш сайт в белый список вашего блокировщика рекламы, это позволит проекту существовать дальше и дарить вам интересный, познавательный и развлекательный контент!