10 самых необычных экспериментов в историиИстория естествознания полна экспериментов, заслуживающих названия странных. Описанная ниже десятка выбрана целиком на вкус автора, с которым можно не соглашаться. Одни из опытов, попавших в эту подборку, закончились ничем. Другие привели к появлению новых отраслей науки. Есть эксперименты, начатые много лет назад, но не оконченные до сих пор. 1. Прыжки НьютонаВ детстве Исаак Ньютон (1643–1727) рос довольно хилым и болезненным мальчиком. В играх на свежем воздухе он обычно отставал от сверстников. Третьего сентября 1658 года умер Оливер Кромвель, английский революционер, ненадолго ставший полновластным правителем страны. В этот день над Англией пронёсся необычайно сильный ветер. Народ говорил: это сам дьявол прилетал за душой узурпатора! Но в местечке Грэнтем, где в то время жил Ньютон, дети затеяли состязание по прыжкам в длину. Заметив, что прыгать лучше по ветру, чем против него, Исаак обскакал всех соперников. Позже он занялся опытами: записал, на сколько футов удаётся прыгнуть по ветру, на сколько — против ветра и на какую дальность он может прыгнуть в безветренный день. Так он получил представление о силе ветра, выраженной в футах. Уже став знаменитым учёным, он говорил, что считает эти прыжки своими первыми экспериментами. Ньютон известен как великий физик, но его первый эксперимент можно отнести скорее к метеорологии. 2. Концерт на рельсахБыл и обратный случай: метеоролог провёл эксперимент, доказавший справедливость одной физической гипотезы. Австралийский физик Христиан Доплер в 1842 году выдвинул и теоретически обосновал предположение о том, что частота световых и звуковых колебаний должна меняться для наблюдателя в зависимости от того, движется ли источник света либо звука от наблюдателя или к нему. В 1845 году голландский метеоролог Христофор Бейс-Баллот решил проверить гипотезу Доплера. Он нанял паровоз с грузовой платформой, посадил на платформу двух трубачей и попросил их держать ноту соль (два трубача были нужны для того, чтобы один из них мог набирать воздух, пока другой тянет ноту, и таким образом звук не прерывался). На перроне одного полустанка между Утрехтом и Амстердамом метеоролог разместил нескольких музыкантов без инструментов, но с абсолютным музыкальным слухом. После чего паровоз стал с разной скоростью таскать платформу с трубачами мимо перрона со слушателями, а те отмечали, какую ноту слышат. Потом наблюдателей заставили ездить, а трубачи играли, стоя на перроне. Опыты продолжались два дня, в результате стало ясно, что Доплер прав. Кстати, позже Бейс-Баллот основал голландскую метеослужбу, сформулировал закон своего имени (если в Северном полушарии стать спиной к ветру, то область низкого давления будет от вас по левую руку) и стал иностранным членом-корреспондентом Петербургской академии наук. 3. Наука, родившаяся за чашкой чаяОдин из основателей биометрии (математической статистики для обработки результатов биологических экспериментов) английский ботаник Роберт Фишер работал в 1910–1914 годах на агробиологической станции близ Лондона. Коллектив сотрудников состоял из одних мужчин, но однажды на работу приняли женщину, специалистку по водорослям. Ради неё решено было учредить в общей комнате файф-о-клоки. На первом же чаепитии зашёл спор на извечную для Англии тему: что правильнее — добавлять молоко в чай или наливать чай в чашку, где уже есть молоко? Некоторые скептики стали говорить, что при одинаковой пропорции никакой разницы во вкусе напитка не будет, но Мюриэль Бристоль, новая сотрудница, утверждала, что легко отличит «неправильный» чай (английские аристократы считают правильным доливать молоко в чай, а не наоборот). В соседней комнате приготовили при участии штатного химика разными способами несколько чашек чаю, и леди Мюриэль показала тонкость своего вкуса. А Фишер задумался: сколько раз надо повторить опыт, чтобы результат можно было считать достоверным? Ведь если чашек было бы всего две, угадать метод приготовления вполне можно было чисто случайно. Если три или четыре — случайность тоже могла бы сыграть роль… Из этих размышлений родилась классическая книга «Статистические методы для научных сотрудников», опубликованная в 1925 году. Методы Фишера биологи и медики используют до сих пор. Заметим, что Мюриэль Бристоль, по воспоминаниям одного из участников чаепития, правильно определила все чашки. Кстати, причина того, почему в английском высшем свете принято доливать молоко в чай, а не наоборот, связана с физическим явлением. Знать всегда пила чай из фарфора, который может лопнуть, если сначала налить в чашку холодное молоко, а потом добавить горячий чай. Простые же англичане пили чай из фаянсовых или оловянных кружек, не опасаясь за их целость. 4. Домашний МауглиВ 1931 году необычный эксперимент провела семья американских биологов — Уинтроп и Люэлла Келлог. Прочитав статью о печальной судьбе детей, росших среди животных — волков или обезьян, биологи задумались: а что, если сделать наоборот — попытаться воспитать обезьяньего детёныша в человеческой семье? Не приблизится ли он к человеку? Сначала учёные хотели переселиться со своим маленьким сыном Доналдом на Суматру, где нетрудно было бы среди орангутанов найти компаньона для Доналда, но на это не хватило денег. Однако Йельский центр по изучению человекоподобных обезьян одолжил им маленькую самку шимпанзе, которую звали Гуа. Ей было семь месяцев, а Доналду — 10. Супруги Келлог знали, что почти за 20 лет до их эксперимента русская исследовательница Надежда Ладыгина уже пыталась воспитывать, как воспитывают детей, годовалого шимпанзёнка и за три года не добилась успехов в «очеловечивании». Но Ладыгина проводила опыт без участия детей, и Келлоги надеялись, что совместное воспитание с их сыном даст другие результаты. К тому же нельзя было исключить, что годовалый возраст уже поздноват для «перевоспитания». Гуа приняли в семью и стали воспитывать наравне с Доналдом. Друг другу они понравились и вскоре стали неразлучны. Экспериментаторы записывали каждую деталь: Доналду нравится запах духов, Гуа его не любит. Проводили опыты: кто быстрее догадается, как с помощью палки добыть печенье, подвешенное к потолку посреди комнаты на нитке? А если завязать мальчику и обезьянке глаза и позвать их по имени, кто лучше определит направление, откуда идёт звук? В обоих тестах победила Гуа. Зато когда Доналду дали карандаш и бумагу, он сам начал что-то карябать на листе, а обезьянку пришлось учить, что можно делать с карандашом. Попытки приблизить обезьяну к человеку под влиянием воспитания оказались скорее неудачными. Хотя Гуа часто передвигалась на двух ногах и научилась есть ложкой, даже стала немножко понимать человеческую речь, она приходила в замешательство, когда знакомые люди появлялись в другой одежде, её не удалось научить выговаривать хотя бы одно слово — «папа» и она, в отличие от Доналда, не смогла освоить простенькую игру типа наших «ладушек». Однако эксперимент пришлось прервать, когда выяснилось, что к 19 месяцам и Дональд не блистал красноречием — он освоил всего три слова. И что ещё хуже, желание поесть он стал выражать типичным обезьяньим звуком вроде взлаивания. Родители испугались, что постепенно мальчик опустится на четвереньки, а человечий язык так и не освоит. И Гуа отослали обратно в питомник. 5. Глаза ДальтонаРечь пойдёт об эксперименте, проведённом по просьбе экспериментатора после его смерти. Английский учёный Джон Дальтон (1766–1844) памятен нам в основном своими открытиями в области физики и химии, а также первым описанием врождённого недостатка зрения — дальтонизма, при котором нарушено распознавание цветов. Сам Дальтон заметил, что страдает этим недостатком, только после того, как в 1790 году увлёкся ботаникой и оказалось, что ему трудно разобраться в ботанических монографиях и определителях. Когда в тексте шла речь о белых или жёлтых цветках, он не испытывал затруднений, но если цветки описывались как пурпурные, розовые или тёмно-красные, все они казались Дальтону неотличимыми от синих. Нередко, определяя растение по описанию в книге, учёному приходилось спрашивать у кого-нибудь: это голубой или розовый цветок? Окружающие думали, что он шутит. Дальтона понимал только его брат, обладавший тем же наследственным дефектом. Сам Дальтон, сравнивая своё цветовосприятие с видением цветов друзьями и знакомыми, решил, что в его глазах имеется какой-то синий светофильтр. И завещал своему лаборанту после смерти извлечь его глаза и проверить, не окрашено ли в голубоватый цвет так называемое стекловидное тело — студенистая масса, заполняющая глазное яблоко? Лаборант выполнил завещание учёного и не нашёл в его глазах ничего особенного. Он предположил, что у Дальтона, возможно, было что-то не в порядке со зрительными нервами. Глаза Дальтона сохранились в банке со спиртом в Манчестерском литературно-философском обществе, и уже в наше время, в 1995 году, генетики выделили и исследовали ДНК из сетчатки. Как и следовало ожидать, в ней обнаружились гены дальтонизма. Нельзя не упомянуть ещё о двух крайне странных опытах с органами зрения человека. Исаак Ньютон, вырезав из слоновой кости тонкий изогнутый зонд, запускал его себе в глаз и давил им на заднюю сторону глазного яблока. При этом в глазу возникали цветные вспышки и круги, из чего великий физик сделал вывод, что мы видим окружающий мир потому, что свет оказывает давление на сетчатку. В 1928 году один из пионеров телевидения, английский изобретатель Джон Бэйрд, пытался использовать человеческий глаз в качестве передающей камеры, но, естественно, потерпел неудачу. 6. Неужели Земля — шар?Редкий пример эксперимента в географии, которая вообще-то не является экспериментальной наукой. Выдающийся английский биолог-эволюционист, соратник Дарвина — Альфред Рассел Уоллес был активным борцом против лженауки и всяческих суеверий. В январе 1870 года Уоллес прочитал в одном научном журнале объявление, податель которого предлагал спор на 500 фунтов стерлингов тому, кто возьмётся наглядно доказать шарообразность Земли и «продемонстрирует способом, понятным каждому разумному человеку, выпуклую железную дорогу, реку, канал или озеро». Спор предлагал некий Джон Хэмден, автор книги, доказывавшей, что Земля на самом деле — плоский диск. Уоллес решил принять вызов и для демонстрации закруглённости Земли выбрал прямолинейный отрезок канала длиной шесть миль. В начале и в конце отрезка стояли два моста. На одном из них Уоллес установил строго горизонтально 50-кратный телескоп с нитями визира в окуляре. Посреди канала, на расстоянии трёх миль от каждого моста, он поставил высокую вешку с чёрным кружком на ней. На другой мост навесил доску с горизонтальной чёрной полосой. Высота над водой телескопа, чёрного кружка и чёрной полосы была совершенно одинаковой. Если Земля (и вода в канале) плоская, чёрная полоса и чёрный кружок должны совпасть в окуляре телескопа. Если же поверхность воды выпуклая, повторяет выпуклость Земли, то чёрный кружок должен оказаться выше полосы. Так и получилось. Причём размер расхождения хорошо совпадал с расчётным, выведенным из известного радиуса нашей планеты. Однако Хэмден отказался даже посмотреть в телескоп, прислав для этого своего секретаря. А секретарь заверил собравшихся, что обе метки находятся на одном уровне. Если некоторое расхождение и наблюдается, то это связано с аберрациями линз телескопа. Последовал многолетний судебный процесс, в результате которого Хэмдена всё же заставили выплатить 500 фунтов, но Уоллес потратил на судебные издержки значительно больше. 7 и 8. Два самых долгих экспериментаВозможно, самый длительный эксперимент мира начат 130 лет назад (см. «Наука и жизнь» № 7, 2001 г.) и пока не закончен. Американский ботаник У. Дж. Бил в 1879 году закопал в землю 20 бутылок с семенами распространённых сорняков. С тех пор периодически (сначала каждые пять, потом десять, а ещё позже — каждые двадцать лет) учёные выкапывают одну бутылку и проверяют семена на всхожесть. Некоторые особо стойкие сорняки прорастают до сих пор. Следующую бутылку должны достать весной 2020 года. Самый длительный физический эксперимент начал в университете австралийского города Брисбена профессор Томас Парнелл. В 1927 году он поместил в укреплённую на штативе стеклянную воронку кусок твёрдой смолы — вара, который по молекулярным свойствам является жидкостью, хотя и очень вязкой. Затем Парнелл нагрел воронку, чтобы вар слегка расплавился и затёк в носик воронки. В 1938 году первая капля смолы упала в подставленный Парнеллом лабораторный стакан. Вторая упала в 1947 году. Осенью 1948 года профессор скончался, и наблюдение за воронкой продолжили его ученики. С тех пор капли падали в 1954, 1962, 1970, 1979, 1988 и 2000 годах. Периодичность падения капель в последние десятилетия замедлилась из-за того, что в лаборатории смонтировали кондиционер и стало холоднее. Любопытно, что ни разу капля не падала в присутствии кого-либо из наблюдателей. И даже когда в 2000 году перед воронкой смонтировали веб-камеру для передачи изображения в интернет, в момент падения восьмой и на сегодня последней капли камера отказала! Опыт ещё далёк от завершения, но уже ясно, что вар в сто миллионов раз более вязок, чем вода. 9. Биосфера-2Это самый масштабный эксперимент из попавших в наш произвольный список. Решено было сделать действующую модель земной биосферы. В 1985 году более двухсот американских учёных и инженеров объединились для того, чтобы построить в пустыне Сонора (штат Аризона) огромное стеклянное здание с образцами земной флоры и фауны. Планировали герметически закрыть здание от любых поступлений посторонних веществ и энергии (кроме энергии солнечного света) и поселить здесь на два года команду из восьми добровольцев, которых сразу прозвали «бионавтами». Эксперимент должен был способствовать изучению связей в естественной биосфере и проверить возможность длительного существования людей в замкнутой системе, например при дальних космических полётах. Поставлять кислород должны были растения; вода, как рассчитывали, будет обеспечиваться естественным круговоротом и процессами биологического самоочищения, пища — растениями и животными. Внутренняя площадь здания (1,3 га) делилась на три основные части. В первой разместились образцы пяти характерных экосистем Земли: участок тропического леса, «океан» (бассейн с солёной водой), пустыня, саванна (с протекающей через неё «рекой») и болото. Во всех этих частях поселили отобранных ботаниками и зоологами представителей флоры и фауны. Вторую часть здания отвели системам жизнеобеспечения: четверть гектара для выращивания съедобных растений (139 видов, считая тропические фрукты из «леса»), бассейны для рыбы (взяли тиляпию, как неприхотливый, быстро растущий и вкусный вид) и отсек биологической очистки сточных вод. Наконец, имелись жилые отсеки для «бионавтов» (каждому — 33 квадратных метра с общей столовой и гостиной). Солнечные батареи обеспечивали электроэнергию для компьютеров и ночного освещения. В конце сентября 1991 года восемь человек «замуровались» в стеклянной оранжерее. И вскоре начались проблемы. Погода оказалась необычайно облачной, фотосинтез шёл слабее нормы. К тому же в почве размножились бактерии, потребляющие кислород, и за 16 месяцев его содержание в воздухе снизилось с нормальных 21% до 14%. Пришлось добавлять кислород извне, из баллонов. Урожаи съедобных растений оказались ниже расчётных, население «Биосферы-2» постоянно голодало (хотя уже в ноябре пришлось вскрыть продуктовый НЗ, за два года опыта средняя потеря веса составила 13%). Исчезли заселённые насекомые-опылители (вообще вымерло от 15 до 30% видов), зато размножились тараканы, которых никто не заселял. «Бионавты» всё же худо-бедно смогли просидеть в заточении намеченные два года, но в целом эксперимент оказался неудачным. Впрочем, он лишний раз показал, насколько тонки и уязвимы механизмы биосферы, обеспечивающие нашу жизнь. Гигантское сооружение используется сейчас для отдельных опытов с животными и растениями. 10. Сжигание алмазаВ наше время уже никого не удивляют опыты дорогостоящие и требующие огромных экспериментальных установок. Однако 250 лет назад это было в новинку, поэтому смотреть на поразительные опыты великого французского химика Антуана Лорана Лавуазье сходились толпы народа (тем более что опыты проходили на свежем воздухе, в саду около Лувра). Лавуазье исследовал поведение разных веществ при высоких температурах, для чего построил гигантскую установку с двумя линзами, концентрировавшими солнечный свет. Изготовить собирательную линзу диаметром 130 сантиметров и сейчас задача нетривиальная, а в 1772 году это было просто невозможно. Но оптики нашли выход: сделали два круглых вогнутых стекла, спаяли их и в промежуток между ними налили 130 литров спирта. Толщина такой линзы в центре составляла 16 сантиметров. Вторая линза, помогавшая собрать лучи ещё сильнее, была раза в два меньше, и её изготовили обычным способом — шлифованием стеклянной отливки. Эту оптику установили на огромной специальной платформе. Продуманная система рычагов, винтов и колёс позволяла наводить линзы на Солнце. Участники опыта были в закопчённых очках. В фокус системы Лавуазье помещал различные минералы и металлы: песчаник, кварц, цинк, олово, каменный уголь, алмаз, платину и золото. Он отметил, что в герметически запаянном стеклянном сосуде с вакуумом алмаз при нагревании обугливается, а на воздухе сгорает, полностью исчезая. Опыты обошлись в тысячи золотых ливров. Источник: billionnews.ru
Забудьте о том, что «выживает сильнейший». Землю наследуют ленивые!Эволюционные биологи выяснили, что виды, которые используют больше энергии в своей повседневной жизни, вымирают быстрее, чем менее энергичные животные. Прекрасный поворот для тех, кого упрекают в неисполнении своих обязанностей. Неважно, что накопилась гора работы, лениться – это выигрышная эволюционная стратегия, которая отдаляет вымирание вида, пишет The Guardian. Исследователи, изучив почти 300 видов моллюсков, которые жили и вымерли в Атлантике за последние пять миллионов лет, обнаружили, что высокий уровень метаболизма предсказал, которые виды пойдут по пути додо (вымершего маврикийского дронта). Учёные выявили, что у морских улиток, морских слизней, мидий и гребешков, которые сжигали большую часть энергии в своей повседневной жизни, возрастала вероятность вымирания по сравнению с их менее энергичными сородичами. Особенно когда они селились в небольших океанских средах. Хотя причины вымирания разнообразны и сложны, исследование указывает на связь между скоростью, с которой животные используют энергию для роста и поддержания тканей своего тела, и продолжительностью периода, на который вид сбережётся на Земле. Чем ниже скорость метаболизма, тем более вероятно, что вид, к которому вы принадлежите, выживет, – сказал Брюс Либерман, профессор экологии и эволюционной биологии, возглавивший исследование в Канзасском университете. – Вместо "выживает наиболее приспособленный", может быть, лучший афоризм в истории жизни – это "выживает самый ленивый" или, по крайней мере, "выживает медлительный". Учёные изучили 299 видов брюхоногих моллюсков, улиток и слизняков, а также двустворчатых моллюсков, в том числе мидии и гребешки, которые обитали в западной части Атлантического океана с плиоцена, то есть более пяти миллионов лет назад, до наших дней. Когда исследователи рассчитали метаболические показатели для каждого вида, они обнаружили, что расходование энергии заметно отличалось для 178 видов, которые вымерли, по сравнению с теми, которые до сих пор существуют. Работу опубликовали в издании «Труды Королевского Общества» (серия B; биологические науки). Вероятное объяснение заключается в том, что более медлительные или ленивые существа имели более низкие энергетические или пищевые потребности и, таким образом, могли обходиться малыми ресурсами, когда наступали суровые времена, – предполагает Либерман. Эта работа может помочь экологам в прогнозировании, какие виды с наибольшей вероятностью вымрут первыми, поскольку глобальное изменение климата препятствует производству продовольствия. Следующий шаг учёных – выяснить, играет ли метаболизм роль в темпах вымирания других животных, в том числе и тех, которые живут на суше. Если в двух словах, то наша работа показывает, что медлительность может сделать вас более способным к выживанию. Итак, пора вздремнуть, ну, как только мы решим проблему экологического кризиса на нашей планете, – подытожил биолог. Превью: Притча о плевелах, Абрахам Блумарт, 1624 год. Источник: cameralabs.org
Как культура влияет на наше зрение? Что видит мозг, перепрошитый традициями?Когда спорить бесполезно? Когда собеседник буквально видит другой мир. Мы привыкли думать, что взгляды формируются воспитанием и идеологиями, но новое исследование оптических иллюзий показывает: культура меняет не только мнения — она меняет то, что мы видим вокруг себя, таким образом наше восприятие полностью зависит от наших культурных традиций. Посмотрите на картинку-головоломку под заголовком: кто-то будет уверен, что перед ним ряды прямоугольников, другие — видят лишь столбцы кругов — и оба лагеря правы. Новое исследование оптических иллюзий показывает: культура так глубоко «перепрошивает» наше восприятие, что мы буквально проживаем разные визуальные реальности, даже когда смотрим на одно и то же изображение. Учёные из LSE, Гарвардского и Аризонского университетов задались этим вопросом. Они показали шесть иллюзий трем группам: жителям США и Великобритании, людям из полугородского Намибийского Опуо и традиционным общинам народа Химба. Их целью было выяснить, как культура, форма жилья и образ жизни влияют на самые базовые сигналы, которые получает наш мозг. Иллюзии варьировали от знаменитой иллюзии Коффера до известных лишь специалистам иллюзий «слепоты к кривизне», «стен в кафе» и амодального завершения форм. Результаты исследования, которые получили ученые немного сбивают с толку. Иллюзия Коффера (главная фотография) дала следующие результаты: 97% горожан сперва видят только прямоугольники, а 96% жителей круглых хижин народа Химба — только круги. При указании на то, что есть и другие фигуры, практически все люди подтвердили их наличие. Далее оценивались результаты восприятия иллюзии психолога из Японии Коски Такахаши, при помощи которой можно оценить, насколько Вы «слепы к кривизне». Она представляет собой картинку, на которой изображены волнистые линии. Они имеют одинаковую форму, угол наклона и расположены параллельно друг другу. Но при этом большинство людей воспринимает часть этих линий не как волны, а как зигзаги благодаря их различному окрасу. При проведении исследования горожане в четыре раза чаще «ломали» плавные линии в углы, чем жители деревень Химба. Иллюзия "Стены кафе" состоит в том, что с первого взгляда кажется, что серые линии между чёрными и белыми квадратами расположены под углом, но если присмотреться, то можно увидеть, что линии абсолютно ровные. Мозг, сбитый с толку контрастными и близко расположенными прямоугольниками, видит серые линии как часть мозаики, выше или ниже прямоугольников. Результаты исследования всех групп на этой иллюзии показали, что параллельные линии «косят» у 90% западной выборки, но лишь у 40% сельских жителей. Гештальт-силуэты или иллюзии амодального завершения форм дали такие результаты: 93% горожан мгновенно дорисовывали форму, тогда как 78% представителей народа Химба вообще не видели фигуру даже после подсказки. Таким образом, ученые сложили некую картину результатов:
Ученые также уточнили, что эти результаты не связаны с лингвистическими особенностями языка каждого из народов, а именно с культурным восприятием. Интересно, что выводы ученых не ограничились фактами о восприятии оптических иллюзий, а заключили следующее: 1. Психология находится под угрозой «WEIRD-ошибки». Большая часть науки о зрении и восприятии построена на студентах западных кампусов. Теперь ясно, что их видение мира - лишь частный случай для Homo sapiens. 2. Эволюционная пластичность. За десятки лет урбанизации мозг перенастраивает даже самые ранние, «автоматические» уровни обработки зрительных сигналов. 3. AI-дизайн. Алгоритмы распознавания образов, обученные на городских датасетах, могут «пропускать» то, что заметит сельский пользователь, и наоборот. Помимо этого, прорывной вывод, который сделали ученые: культура — это не только совокупность традиций, языка, нарративов, ритуалов, искусства, технологий, права и быта. Помимо вышеназванного, культура перепрошивает зрение, и поэтому мы видим по сути разные миры. Без преувеличения можно сказать, что культура – когнитивный супер-гаджет, который перекалибровывает сенсоры Homo sapiens. Механизмы в основе прорывного вывода ещё предстоит распутать — авторы планируют новые углубленные эксперименты. Но одно уже абсолютно ясно. Когнитивный механизм культуры – это важнейший способ работы биоматематики сознания. И одна из его важнейших ролей – обманывать нас. И поэтому, в следующий раз, прежде чем спорить о «самоочевидном», спросите: а одинаковыми ли глазами мы вообще это видим? А для начала проверьте, - что Вы видите в иллюзии Коффера на главной картинке поста (прямоугольники или круги)?
Кто из ученых был двоечником и хулиганом в юные годыПожалуй, учеба в школе и институте - трудный этап в жизни практически каждой семьи, ведь все родители возлагают большие надежды на своего ребенка. Поэтому каждая принесенная двойка или запись о плохом поведении сводит родителей с ума. Но ведь красный диплом давно уже не важен в современном обществе. Хорошие оценки и поведение не являются залогом успешного будущего человека. К примеру, Менделееву не давалась латынь, а Циолковского вообще исключили после третьего класса из школы. Подробнее об этих и других ученых, которые были двоечниками и задирами - читайте в статье. Дмитрий МенделеевДмитрий Иванович был самым младшим - семнадцатым ребенком. В семье все были при деле, так что некому было развлекать младшего. Поэтому его в семь лет отдали в первый класс гимназии вольным слушателем, так как принимали туда лишь с восьми. А через год мальчик снова пошел в первый класс, но уже по-настоящему. Будущий русский ученый часто получал плохие оценки, особенно это касалось уроков латыни. Кстати, именно из-за латыни его не один раз могли бы оставить на второй год и даже выгнать из гимназии. Но горе-ученика спасали из-за уважения к его отцу, который раньше был директором этой гимназии. Помимо плохих отметок у юного Менделеева были проблемы и с поведением: он часто участвовал в драках, а как-то раз даже был участником дуэли. Когда будущему ученому было тринадцать лет, умер его отец от чахотки. Спустя год окончил гимназию его старший брат Павел, который был защитником для Дмитрия в учебные годы. Эти события повлияли на поведение и оценки Менделеева-младшего: он перестал задираться, участвовать в конфликтах и начал более ответственно подходить к процессу обучения. Так что в аттестате у него не было неудовлетворительных отметок, что позволило ему стать студентом Петербургского педагогического института, откуда он выпустился с золотой медалью. Спустя четырнадцать лет после окончания института ученый создал периодическую систему химических элементов. Константин ЦиолковскийМаленького Костю учили буквам с пяти лет. Обучение проходило мучительно, несмотря на его способности. Но в семь лет он уже сам начал взахлеб читать любимые сказки, а затем все, что попадалась под руку. Циолковский с детства любил мечтать и даже платил своему младшему брату, чтобы он слушал эти «выдумки». Константин был веселым и подвижным мальчиком: любил играть в городки, жмурки, кататься на коньках, запускать воздушного змея и прочее. Характер у него был довольно задиристый, поэтому бывало, что он получал розги за драки с братом и ослушание взрослых. Когда Косте было лет десять, он сильно простудился. В итоге простуда переросла в скарлатину с осложнениями, думали, что мальчик не выживет. Однако вскоре он пошел на поправку, только практически оглох. Сверстники в школе над ним смеялись, дразнили, да и учителей он сильно раздражал тем, что он их не слышал. Оглохший ученик стеснялся одноклассников, получал физические наказания, был неоднократно заперт в карцере за проступки. После смерти матери Константин стал учиться еще хуже и был оставлен на второй год. Спустя три года таких мучений Константина выгнали из школы. После этого он уже никогда не учился ни в одном учебном заведении. Он начал обучаться самостоятельно, поставил десятки удачных и важных для науки опытов. А спустя годы сделал открытия, благодаря которым ученые СССР смогли построить ракету и отправить в космос первого человека. Николай ЛобачевскийРусский математик учился достаточно прилежно, но правда при поступлении в вуз сдал вступительный экзамен лишь со второй попытки. А вот с поведением у него были серьезные проблемы. Из-за своих хулиганств он попадал более тридцати раз в журнал проступков: то смастерит ракету, которую запустят на дворе гимназии, то заменит еду в тарелках и соусниках на воду. Как-то раз, проспорив, он перепрыгнул через голову профессора, а вскоре заявился к университету верхом на корове, изображая акробатку из цирка, перед самим ректором. А однажды, из-за участия в потасовке, полиция забрала Николая в участок. После этого с него сняли звание старосты. Таким образом Лобачевский стал лидером по «худому поведению». А в студенческой характеристике его описали как упрямого, мечтательного, нераскаянного и подающего плохой пример своим товарищам. В конце концов Николай раскаялся публично во всем содеянном, пообещав в будущем исправиться. Так что ему удалось окончить институт, получив магистерскую степень физико-математических наук. А затем он и вовсе стал профессором университета, в будущем удивив всех участием в создании неевклидовой геометрии. Николай Пржевальский![]() Николай Пржевальский был одним из лучших учеников по успеваемости, но вот с поведением у него были огромные проблемы Изначально русский географ и натуралист-путешественник обучался дома, где его учителями были: мама, няня и дядя. Когда Николаю исполнилось десять лет, его устроили во второй класс гимназии. По учебе у Николая проблем не было, его считали «первым учеником», но вот его поведение оставляло желать лучшего. По его воспоминаниям, в детском возрасте он получил большое количество розог, так как был сорванцом. Как-то раз в шестом классе, чтобы отомстить учителю, ученики решили избавиться от журнала с оценками. Все одноклассники тянули жребий, но выпал он именно Николаю. Ему пришлось украсть журнал и утопить в реке. Через несколько дней, проведенных в карцере, Пржевальский сознался в содеянном, за что вышел приказ о его отчислении. Когда его мать узнала об этом, то слезно молила руководство заменить исключение из гимназии на хорошие розги. Пораздумав, руководство гимназии пошло навстречу матери. За такие суровые годы учебы у юноши появилось твердое желание поступить на военную службу: он поступил в Рязанский пехотный полк, став в будущем известным исследователем Центральной Азии. Исаак Ньютон![]() Исаак Ньютон в детстве очень часто болел, что плохо сказывалось на его успеваемости и общении со сверстниками Но двоечники были не только среди российских ученых, такие примеры есть и в зарубежной истории. К примеру, всем известный Исаак Ньютон. Будущий гений родился очень хилым и слабым ребенком. Долгое время мальчика не крестили, так как не были уверены, что он сможет выжить. Но Исаак нашел в себе силы, чтобы окрепнуть и дожить до 84 лет. Причем в те годы это было редкостью и считалось глубокой старостью. История, произошедшая в школе с этим известным британским физиком, достаточно интересна. В школьные годы мальчик часто болел, из-за чего пропускал много занятий, получал двойки и не был любимцем учителей. Проблем еще добавляли одноклассники, с которыми Исаак не мог найти общий язык. Как-то раз его сильно избил одноклассник, но ответить кулаками обидчику слабый мальчишка не смог. Он чувствовал себя униженным и подавленным, поэтому решил во что бы то ни стало завоевать уважение сверстников другим способом, а именно - своим умом. После драки парня как будто подменили: он вплотную взялся за учебу и стал лучшим учеником. Особенно его интересовала математика, различные необъяснимые природные явления и техника. Когда Исааку исполнилось шестнадцать лет, его мать овдовела второй раз. Ей было тяжело справляться с хозяйством, поэтому она возлагала надежды на помощь сына. Но все знакомые и родные уговаривали ее отпустить сына продолжать обучение. Благодаря школьному учителю мистеру Стоксу Ньютон смог окончить школу и поступить в Кембриджский университет. Билл ГейтсПримеры, когда двоечники добивались в будущем успеха, есть и в современном мире. Билл Гейтс - один из богатейших людей на планете, хотя в школе учился из ряда вон плохо. Ни родители, ни учителя не могли бы тогда подумать, что Билл станет таким успешным предпринимателем и общественным деятелем, а также одним из создателей и акционеров компании Microsoft. Билл Гейтс - настоящий образец того, как человек может с нуля успешно создать целую отрасль программного обеспечения. Некоторые полагают, что Билл родился программистом, так как научиться этому невозможно. Его семья была достаточно обеспеченной, родители могли позволить своему сыну обучение в престижной частной школе. Мальчик был замкнутым и застенчивым, избегал общения и игр с одноклассниками, не любил учебу и даже срывал занятия своими выходками. Все это беспокоило родителей и учителей, поэтому было решено обратиться к психотерапевту. Опытный специалист смог рассмотреть в мальчике железный характер и посоветовал родителям постараться смириться с мышлением и образом жизни ребенка, не меняя его. Двойки у мальчика были практически по всем школьным предметам. Родители решили простимулировать учебу своего чада с помощью вознаграждения: они платили ему по 25 центов за каждую пятерку в дневнике. Но за год Билл смог заработать таким образом лишь 5 долларов. Ситуация резко поменялась, когда в школе установили первый компьютер: мальчик увлекся программированием и математикой, все также не обращая внимания на другие предметы. И уже в тринадцать лет Билл создал свою первую компьютерную игру «крестики-нолики». И хотя эта игра была проста, она стала началом его огромного пути. Источник: kulturologia.ru
Почему быть пессимистом не так уж плохоКак же мы любим давать оценку другим людям. Но называть кого-то пессимистами, словно оскорбляя их, и оптимистами, стараясь сделать комплимент, нельзя. Это глупо, и ниже я расскажу почему. Ответить на вопрос о том, кто такие оптимисты и пессимисты, может каждый. Оптимист видит каждое событие с положительной точки зрения, а пессимист — с отрицательной. Более того, оптимист считает проблемы временными, а пессимист думает, что они постоянны. Интереснее то, как мы ими становимся. Ответов много: генетическая предрасположенность, национальный менталитет, типы темперамента. Я придерживаюсь теории о воспитании. Все мы были детьми, и каждого из нас воспитывали в той или иной обстановке. Думаю, именно это влияет больше всего. Почему это важноПотому что считается, что оптимизм — это хорошо, а пессимизм — плохо, и это в корне неверно. Психологи и исследователи годами выясняют, кто лучше и что вреднее, но однозначного ответа мы так и не получили. И думаю, что не получим никогда. Миру нужны и те и другие. ОптимизмПочему хорошо быть оптимистом? Во-первых, потому что большинство людей считают, что быть оптимистом банально лучше, удобнее. Оптимисты комфортнее в общении, и это правда. Многие исследования также показывают, что оптимисты здоровее. В исследовании Гарвардского университета принимали участие 99 человек. Все участники были заранее разделены на две группы: оптимистов и пессимистов. Исследование было долгосрочным, и в результате выяснилось, что участники из первой группы были значительно здоровее в возрасте от 45 до 60 лет. Риск заболевания инфекционными болезнями, болезнями сердца и почек был значительно меньше. Такие исследования как нельзя лучше доказывают, что наше ментальное состояние очень сильно влияет на физическое. ПессимизмНо есть хорошие новости и для пессимистов. И я уверен, что вы воспримите их с большей радостью. Знаете почему? Чаще всего пессимисты не ждут хороших новостей, поэтому получают от них больше удовольствия. По этой же причине пессимистам проще справляться с проблемами, ведь как раз они ожидаемы. Пессимисты адекватнее реагируют на критику. Они знают, что нет ничего идеального, и всегда готовы стать лучше за счёт советов других. И вот что странно. Существует множество исследований, подтверждающих то, что оптимисты гораздо здоровее пессимистов, и не меньше исследований, подтверждающих обратное. К примеру, исследование доктора философских наук Фридера Лэнга доказало, что пессимизм приводит к более долгой и здоровой жизни. Не верить ему сложно, ведь количество участников исследования — 40 000 человек. Лэнг разделил участников на три возрастные группы и попросил их оценить удовлетворённость жизнью сейчас и предсказать её через пять лет. Спустя пять лет после первого интервью Лэнг опросил их снова и получил такие результаты:
Эти данные не имели бы никакого смысла, если бы не одно но: процент людей с болезнями и неудовлетворительным состоянием здоровья был гораздо меньше среди тех, кто недооценил своё будущее. Проще говоря, пессимисты были здоровее. ПротивостояниеВы уже поняли, что показывают все эти исследования и доводы? Глупо делить мир на «хороших» оптимистов и «плохих» пессимистов. Люди, считающие своим долгом задать тебе вопрос о том, почему ты так пессимистично смотришь на жизнь, забавляют. Кажется, что они мысленно ставят тебя в один ряд с преступниками. Давать оценку чужому взгляду на жизнь — абсолютно бесполезное, глупое и бессмысленное занятие. Только вы сами можете сказать, кто вы, и я уверен, что вы давным-давно знаете ответ на этот вопрос. И раз уж вы его знаете, расскажите о своих взглядах на жизнь. Источник: lifehacker.ru
Мифы о генах, которые опровергли учёные1. Генетически человек ближе всего к свиньеХотя заблуждение звучит не слишком логично, оно довольно широко распространено. Вероятно, миф появился потому, что внутренние органы свиней потенциально можно пересаживать человеку. У этих животных нет определённых белков, которые бы вызвали реакцию иммунной системы, поэтому наше тело, скорее всего, примет имплантированный орган за собственный. И тот легче и успешнее приживётся. В теории процесс должен пройти ещё лучше, если свинья будет генно‑модифицированной. Однако это вовсе не значит, что наши ДНК очень близки. Генетический код во многом определяет эволюция: больше всего он похож у животных одного отряда, семейства, рода и вида. Ближайшие родственники людей — это приматы, особенно шимпанзе. ДНК последних в особенности напоминает нашу. 2. Гены определяют всёНа самом деле, их влияние не абсолютно. Например, качества личности «Большой пятёрки» зависят от наследственности лишь на 40–60%. То же самое можно сказать и про умственные способности. Было проведено множество экспериментов, с помощью которых учёные пытались обнаружить, наследуется интеллект или нет. И ни один из опытов не показал отчётливой взаимосвязи между умом и генами. Кроме того, организм может по‑разному задействовать отдельные участки ДНК, хотя её структура и остаётся неизменной всю жизнь. Эти механизмы называют эпигенетическими, или надгенетическими. В результате гены у разных людей работают неодинаково. Например, употребление отдельных наркотиков увеличивает выработку определённых белков в организме человека, которые усиливают его зависимость. Также значительное влияние оказывает внешняя среда: окружение, воспитание, условия жизни. Так, плохое питание негативно сказывается на росте детей вне зависимости от генов. Поэтому даже люди с очень похожими ДНК не идентичны. Самый простой пример — однояйцевые близнецы. Генетически они максимально близки, но различие между ними есть всегда. Как во внешности (форма и черты лица, фигура, отпечатки пальцев), так и в характере. 3. С помощью клонирования можно создать точную копию себяС идеей, что гены предопределяют всё в человеке, связаны заблуждения о клонировании. В массовой культуре оно часто воспринимается как создание идентичной копии объекта с теми же физическими и психологическими особенностями и даже воспоминаниями. Однако, как и в случае с однояйцевыми близнецами, клоны не будут абсолютно похожи на оригинал. Например, хоть первая клонированная кошка CC (от английского carbon copy) и была генетически идентична своему донору по кличке Радуга, она имела много индивидуальных особенностей. CC выросла более живой и любознательной, потому что с ней больше играли, а также, в отличие от Радуги, не имела рыжих пятен на шерсти. Поэтому не стоит думать, что клонирование — это создание полной копии. 4. Генетический анализ точно предсказывает будущие болезниИногда этот метод используют, чтобы прогнозировать патологии, которые могут появиться у человека. Некоторые недобросовестные компании уверяют о высокой точности генетических тестов. Однако нужно понимать, что такой анализ лишь показывает вероятность, а не точно предсказывает будущие диагнозы. С высокой вероятностью наследуются только заболевания, которые связаны с одним геном или хромосомой. Например, синдром Дауна или гемофилия. Так как для появления достаточно всего одного признака, шанс получения такой патологии от родителей действительно высок. Однако большинство наследственных болезней связаны не с одним, а со многими генами. К таким патологиям можно, например, отнести рак, диабет, болезни Паркинсона и Альцгеймера. Передача большого числа генетических признаков гораздо менее вероятна, поэтому и возможность их наследования детьми от родителей ниже. То есть предрасположенность не всегда приводит к болезни. Наконец, не только генетика, но и окружающая среда, образ жизни и многое другое влияет на появление тех или иных заболеваний. 5. Каждый ген отвечает за какой‑то конкретный признакСМИ любят писать, что учёные обнаружили связь какой‑нибудь части ДНК с определённой функцией организма, болезнью или чертой характера. Причём чаще всего создаётся впечатление, будто найден один конкретный ген, который, например, отвечает за агрессию или склонность к вредным привычкам. Но это не так. Например, рост не определяется лишь одним геном. За признак могут отвечать самые разные элементы ДНК, которые при этом бывают связаны с несколькими особенностями. Например, ген FTO — с ожирением и раком. Чтобы определять подобные связи, учёные используют специальный метод полногеномного поиска ассоциаций. Так исследователи обнаружили более 270 маркеров, показывающих предрасположенность к шизофрении. Также известно около 100 комбинаций генов, которые связывают с ожирением, и около 150–200 — с интеллектом. Ещё полногеномные исследования показывают, что не существует прямой связи между наследственностью и вредными привычками. Гены только увеличивают риск возникновения проблем с курением, алкоголем и наркотиками. Возможно, это связано с особенностями характера, которые могут привести человека к вредным пристрастиям. Кроме того, различные исследования обнаруживают разные группы маркеров. Поэтому привязать каждый признак к определённому гену нельзя. 6. Все мутации вредныМутация — это любое изменение в геноме. Без неё эволюция была бы невозможна. Именно благодаря мутации жители разных уголков планеты приспособились к специфическим условиям своих мест обитания. Конечно, есть и вредные варианты. Например, связанные с предрасположенностью к раку. Но изменения в геноме также могут вообще никак заметно не влиять на нашу жизнь. Таких подавляющее большинство. Всё потому, что носители вредных мутаций чаще умирают, не передав генетический материал. Полезных изменений меньше всего, однако они могут быть очень крутыми. Например, обладая мутацией CCR5 -del32, человек становится устойчив к ВИЧ и другим заболеваниям, таким как рак и атеросклероз. Поэтому не стоит думать, что мутация всегда приводит к болезни или, например, страшным изменениям во внешности. Источник: lifehacker.ru
Трованты — удивительные «живые» камни Румынии, поставившие ученых в тупикЭти необычные камни можно встретить в Румынии, а точнее, в центральных и южных районах страны. Люди называют их тровантами и наделяют чертами живых существ. Местные жители рассказывают гостям, что эти камни умеют расти, размножаться и даже дышать, что обеспечивает неиссякаемый поток туристов. Ученые, много лет исследовавшие румынские трованты, отрицают их биологическое происхождение, но, несмотря на это, пока не могут объяснить все процессы, происходящие с этими камнями. Трованты представляют собой округлые или продолговатые обтекаемые минеральные образования, практически лишенные крупных выступов и сколов. Основной материал такого камня — распространенный на Земле повсеместно природный материал — песчаник. Но от других глыб из этого минерала трованты отличаются очень сильно. Главное мистическое свойство этих круглых камней — их рост. Трованты на самом деле увеличиваются в размерах, причем как грибы, после хорошего дождя. В румынских деревнях любят рассказывать о том, что небольшой камень может за одну дождливую ночь вырасти в два раза, а большой — на треть. Конечно, это всего лишь байки, но они не лишены основания. Тровант незначительно увеличивается в размерах, если его окружает влажная среда, но очень и очень скромно, часто даже незаметно для глаза. Чем меньше камень — тем стремительнее его рост. Заметить, как подрастают самые большие трованты, весом несколько тонн, можно, лишь воспользовавшись измерительными приборами. Геологи смогли объяснить это странное явление, в котором нет ничего волшебного. Если аккуратно распилить тровант пополам, то можно увидеть отличающиеся по толщине и цвету кольца, как на древесном спиле. В самом центре находится небольшое твердое ядро. Слои эти состоят не только из песчаника — оттенки разных цветов им придает высокое содержание разных минеральных солей. Когда тровант намокает, материал, из которых он состоит, расширяется и камень «растет». В долгосрочной же перспективе увеличение размеров трованта связано с постепенной цементацией песка на его поверхности — столетие за столетием, слой за слоем. Но есть у тровантов особенность, которую пока наука объяснить не может. Эти камни умеют размножаться и происходит это способом, очень похожим на почкование. Сначала на поверхности глыбы появляется бугорок, который увеличивается в размерах, а затем отпадает от материнского камня и становится новым тровантом. Явление это настолько необычно для мира минералов, что одно время даже маститые ученые задумывались о том, не имеем ли мы дело с еще не открытой нами неорганиеской формой жизни. Но как бы нам не хотелось верить в чудеса — все гораздо прозаичнее, и мы просто имеем дело с не описанным ранее геологическим процессом. Люди, столетиями живущие рядом с тровантами, не испытывают к ним никакого мистического благоговения. За сотни лет они привыкли к этим странным камням и вряд ли верят в истории, которые рассказывают о них любопытным туристам. Доказательством небрежного отношения к удивительным каменным соседям можно считать то, что трованты используют в качестве строительного и отделочного материала. Кроме этого, на деревенских кладбищах юга Румынии шарообразные глыбы устанавливают в качестве памятников. В начале 2000-х годов правительство страны, наконец, обратило внимание на трованты и взяло их под свою защиту. Наиболее крупные из них были описаны и занесены в реестр, как памятники природы. В 2006 году в районе Вылча, недалеко от города Костешть, был открыт «Музей тровантов», куда со всей страны свезли самые необычные и крупные камни. Самые эффектные трованты в этой экспозиции под открытым небом достигают 10 метров в высоту. Камни, похожие на трованты, есть и в других местах планеты: в Казахстане, России и Лаосе. Они отличаются от румынских по химическому составу и цвету, но очень схожи своими свойствами.
|